DIIC 7Lk copy

o NAVAL POSTGRADUATE SCHOOL
S Monterey , California
g
o
<
OTIC
' THESIS @Ds

APPLICATIONS OF NEURAL NETWORKS TO
ADAPTIVE CONTROL

by
Russell W. Scott I1

December 1989

Thesis Advisor: Prof. D. J. Collins

Approved for Public Release; Distribution is Unlimited.

UNCLASSIFIED
SeCuriTy CLasSiFICATION OF T A
REPORT DOCUMENTATION PAGE 1
1a REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS :
Unclassified s
2a SECURITY CLASSIFICATION AUTHORITY 3 DOISTRIBUTION/AVAILABILITY OF REPORT i
. Approved for public release; !
2b DECLASSIFICATION / DOWNGRADING SCHEDULE distribution is unlimited. l
4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S) !
\)
64 NAME OF PERFORMING ORGANIZATION 60 OFFICE SYMBOL Ya NAME OF MONITORING ORGANIZATION
Naval Postgraduate School “"ﬁ;r‘“" Naval Postgraduate School
6¢ AOORESS (City. State. and 2P Code) 76 ADDRESS (City. State, and ZiP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000 i
I
Ba NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTHICATION MUMBER ;
JRGANIZATION (I applicable) i
8¢ AODORESS (City, State. and 2P Code) 10 SOURCE OF FUNDING NUMBERS .
PROGRAM PROJECT Tas« WORK UNIT]
ELEMENT NO NO NO aCCESSION NO I
I

Y1 LTLE (include Security Classitication)

Applications of Neural Networks to Adaptive Control)

t) PERIONAL AUTRORS)

M Scott, Russell W. II

“3a Tv2p QFf REPORT 13 T'ME CQVERED 14 DATE OF REPQORT (vear Month Day) [|'S PAGE (OUNT
Engineer's Thesis FROM T0 December 1989 117

‘6 sLPPLENENTARY NOTATION The views expressed in this thesis are those of the author and do
not reflect the official policy or position of the Department of Defense or the U. S,

Government,
t C(OSAT: CODES 18 SUBIECT TERMAS {Continue on reverse if necessery and ident:fy by block number)

FELD GROUP SUB-GROLP Neural Networks, Adaptive Control, Backpropagation,
Parameter Estimation, Parallel Distributed Processing

"9 4BSTRACT (Continue on reverse if necessery and ident:fy by block number) .
The amount of a priori knowledge required to design some modern control systems is

becoming prohibitive. Two current methods addressing this problem are robust control,
in which the control design is insensitive to errors in system knowledge, and adaptive
control, in which the control law is adjusted in response to a continually updated model
of Che system. This thesis examines the application of parallel distributed processing
(neural networks) to the problem of adaptive control. The structure of reural networks
is introduced, focusing on the Backpropagation paradigm. A general form of controller
consistent with use in neural networks is developed and combined with a discussion of
linear least squares parameter estimation techniques to suggest a structure for a neural
network adaptive controller. This neural network adaptive control structure is then
applied to a number of estimation and control problems using as a model the longitudinal
motion of the A-4 aircraft. The purpose of this thesis is to develop and demonstrate a
neural network adaptive control structure consistent with adaptive control theory,

{0 DSTRIUTIONAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
@ . ~ciassse0UNUMITED [SAME as meT O oric usERs Unclassified
Y12 *HME OF RESPONDIBLE 'NDIVIDUAL 226 TELEPHONE (include Ared Code) | 22¢ QfHitt SYMBOL
Dr, D. J. Collins (408) 646-2826 67Co
DO FORM 1473, 8aMmanr 83 APRed tion may be uied until exhausted SECURITY CLASHFICATION NF Triy PACE

Allother edit.ons are obsolete
i

DI e

UNCLASSITIED

Approved for Public release; distribution unlimited.
APPLICATIONS OF NEURAL NETWORKS TO ADAPTIVE CONTROL
by

Russell W. Scott I1
Lieutenant, United States Navy
B.SM.E., United States Naval Academy, 1981
M.S.A E., Naval Postgraduate School, March 1989

Submitted in partial fulfillment of the
requirements for the degree of

AERONAUTICAL ENGINEER
from the

NAVAL POSTGRADUATE SCHOOL
December 1989

Author: /w (/d‘ g"ﬂ

Russell W. Scott 11

Approved by: Z’\@/\«u// . g

D. J. Collins, Thesis Adyisor

: ,
i P Mon

1. Pﬂauser, Second Reader

0

(R ()aed

E. Robert Wood, Chairman, Department of Aeronautics and Astronautics

%M

Gordon E. Schacher, Dean of Faculty and Graduate Education

i1

ABSTRACT
Jv
The amount of a priori knowledge required to design some modern control systems is

becoming prohibitive. Two current methods addressing this problem are robust control, in
which the control design is insensitive to errors in system know.edge, and adaptive control,
in which the control law is adjusted in response to a continually updated model of the system.
This thesis examines the application of parallel distributed processing (neural networks) to
the problem of adaptive control. The structure of neural networks is introduced, focusing
on the Backpropagation paradigm. A general form of controller consistent with use in neural
networks is developed and combined with a discussion of linear least squares parameter
estimation techniques to suggest a structure for neural network adaptive controllers. This
neural network adaptive control structure is then applied to a number of estimation and
control prablems using as a model the longitudinal motion of the A-4 aircraft. The purpose
of this thesis is to develop and demonstrate a neural network adaptive control structure

’

consistent with adaptive control theory.—v\f;{’.

I Accession Por
I
NTIS GRAXI

DTIC TAB 0
Unannounced I
Justirication________.J

T By ___

Availablliity Codes
Avall and/or
Dist Specisl

iii ,. {
.

| Distributionf

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not
have been exercised for all cases of interest. While every effort has been made, within the
time available, to ensure that the programs are free of computational and logic errors, they
cannot be considered validated. Any application of these programs without additional

verification is at the risk of the user.

iv

TABLE OF CONTENTS

I INTRODUCTION . . . et i et s et e it e 1
II. NEURAL NETWORK THEORY i 3
A. NEURAL NETWORK PROCESSING 3

B. NEURAL NETWORK ARCHITECTURE 4

1. Processing Elements i i e 4

2. State of ACIVatiOn 6

3. COMMECtIONS . o .t e e e e e e 6

4 Activation Rule 7

5. Propagation Rule e e 8

6. Learning Rule e e 8

7. ENVITONMEN e e 8

C. NEURAL NETWORK OPERATION 9
BACKPROPAGATION ALGORITHM 9

L. ATChItECIUre . . . e e e e 10

2. Backpropagation Learning Rule 10

3. The Backpropagation Activation Rule 13

4. The Power of the Backpropagation Neural Network 16

IlI. ADAPTIVE CONTROL THEORY i, 17
A. ONE STEP AHEAD PREDICTION CONTROL 17

B. LINEAR LEAST SQUARES ESTIMATION 20

C. NEURAL NETWORKS AND ADAPTIVE CONTROL 22

IV. NEURAL NETWORK ADAPTIVE CONTROL STRUCTURES 24
A. PARALLEL STRUCTURE 24

B. SEQUENTIAL STRUCTURE i, 26

V. EXPERIMENTAL SETUP i s

A. HARDWARE-SOFTWARE PACKAGE

B. LONGITUDINAL MOTION OF THE A-4 AIRCRAFT
C. EXPERIMENTAL DESIGN CONSIDERATIONS
1. Control Design Issues i iiinnenan..
2. Estimation Design Issueso

3.

a. Input-OQutput Selection,
b. Model Selection e

Validation IsSues ittt e e e e e e e

D. SUMMARY OF EXPERIMENTAL SETUP

VI. RESULTS AND DISCUSSION i i i it as

A. NEURAL NETWORK STABILITY CHARACTERISTICS

B. THE NEURAL NETWORK ADAPTIVE CONTROLLER IN

ESTIMATION .. e e e e e e
1. Linear Neural Network Parameterized as Four Transfer Functions ..
2. Fully Connected Linear Neural Network
3. Nonlinear Neural Network Estimators
4. Nonlinear Network Modelling Linear System
5. Multiple Condition Nonlinear Neural Network Estimator

C. CONTROL USING THE NEURAL NETWORK ADAPTIVE

CONTROLLER

D, SUMMARY .. . e

VII. CONCLUSIONS AND RECOMMENDATIONS,

REFERENCES

APPENDIX A: NEURALWORKS PROFESSIONAL II ASSOCIATED

PROGRAMS . . e

vi

APPENDIX C: CONTINUOUS STATE SPACE EQUATIONS AND DISCRETE
MATRIX POLYNOMIALS e
INITIAL DISTRIBUTION LIST i e

vil

LIST OF TABLES

Table I: Flight Conditions Selected for Study 34
Table II: Parameters for Flight Condition Sea Level/Mach 0.4 with a Sampling Time

Of 0.1 SECONAS . . ittt e e 37
Table 1II: Poles and Zeros of the Discrete Simulation for Condition 1 with a Sampling

Time of 0.1 Secondsttt e 38
Table 1IV: Network Weights at 5,000 and 5,000,000 Cycles 57

viii

LIST OF FIGURES

Figure 1: A Typical Neural Network Structure u.n... 5
Figure 2: A Typical Processing Element 5
Figure 3: Neuralworks Professional II Activation Function Logic 7
Figure 4: Plot of the Sigmoid Activation Function 14
Figure 5: Plot of the Hyperbolic Tangent Activation Function 15
Figure 6: Adaptive Control Structure 18
Figure 7. Model Reference Adaptive Control Structure 23
Figure 8: Parallel Neural Network Adaptive Controller 25
Figure 9: Sequential Neural Network Adaptive Controller: Estimation Phase 26
Figure 10: Sequential Neural Network Adaptive Controller: Control Phase 27
Figure 11: A-4 Frequency Response 34
Figure 12: Frequency Response for Discrete A-4 Longitudinal Motion Simulation ... 36
Figure 13: The Effect of Sampling Rate on Poles and Zeros 4]
Figure 14: Effect of Sampling Rate on Excitation 42
Figure 15: Neural Network Adaptive Controller Structure for A-4 Longitudinal
MoOtiOn . e e 45
Figure 16: Non-linear Neural Network Adaptive Controller Structure for A-4
Longitudinal Motion/Multiple Conditions 46
Figure 17: Network Static Stability for u(t) 52
Figure 18: Network Static Stability for at) 52
Figure 19: Network Static Stability for q(t) i 53
Figure 20: Network Static Stability for ©(t) 53
Figure 21: Network Dynamic Stability foru(t) 54
Figure 22: Network Dynamic Stability fora{t) 54
Figure 23: Network Dynamic Stability forq(t) e 55

Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:

Figure 46:

Network Dynamic Stability for ©(t) 55

Input Characteristics e e 59
Plant ResSponse i e e e e 60
Prediction Error e 60
Frequency Response for u(t) for Various Amounts of Training 61
Frequency Response for aft) for Various Amounts of Training 61
Frequency Response for q(t) for Various Amounts of Training 62
Frequency Response for O(t) for Various Amounts of Training 62
Pseudo Random Binary Input Sequence and Spectral Content 63
Prediction Error for Fully Connected Network 65
Spectral Transfer Function for u(t)/Nonlinear Hidden Layer 68
Spectral Transfer Function for a(t)/Nonlinear Hidden Layer 68
Spectral Transfer Function for g(t)/Nonlinear Hidden Layer 69
Spectral Transfer Function for ©(t)/Nonlinear Hidden Layer 69
Spectral Transfer Function for v(t)/Untrained Condition 71
Spectral Transfer Function for aft)/Untrained Condition 71
Spectral Transfer Function for g(t)/Untrained Condition 72
Spectral Transfer Function for ©(t)/Untrained Condition 72
Network Determined Control Input/Noise Rejection 75
Estimation and Tracking Error for u(t)/Noise Rejection 75
Estimation and Tracking Error for a(t)/Noise Rejection 76
Estimation and TRacking Error for q(t)/Noise Rejection 76
Estimation and Tracking Error for 6(t)/Noise Rejection 77

ACKNOWLEDGEMENTS

A work such as this which involves the expenditure of large amounts of time and
effort can never be accomplished through the labors of a single individual. As I sit down
to complete this thesis, it is difficult to find the words to adequately express appreciation
for the contributions of the many people who have made the completion of the task possible.
Special thanks go to Professor Dan Collins, my thesis advisor, for providing me with the
tools, both theoretical and physical, to accomplish this research. Thanks also to Professors
Roberto Cristi and Jeff Burl for filling in the gaps in my knowledge of control theory, and
to Professor Jim Hauser who served as the second reader for this thesis. Many thanks to the
number of colleagues and friends with whom I shared my thoughts and from whom I
received much guidance. Finally, a special thank you to my wife Eola and my daughter

Amanda without whose patience and understanding none of this could have been possible.

X1

I. INTRODUCTION

The classical control process involves eliciting a desired response from a known system.
Determination of this known system is a non-trivial matter which can make the design of a
control system difficult. As control algorithms become more powerful they require larger
amount of a priori knowledge of system behavior. At the same time as systems become
more complex the amount of uncertainty--plant variations, environmental disturbances, and
random noise--which effects the system is increased. Two different approaches exist to
handle this problem. The first involves designing robust controllers, controllers which
provide good performance over a large range of uncertainty. The second, called adaptive
control, involves a controller which alters the control law to compensate for system changes.
The requirements of some current systems exceed the capabilities of either robust or adaptive
control. The combination of these two approaches, robust adaptive control, is a promising
new field of study.

Traditionally control of complex systems which require robustness and adaptation has
been provided by human intervention. If human intelligence is the key to this type of
control, perhaps a controller modelled on the capabilities of the brain may provide an
alternative solution to the development of robust adaptive control. Neural networks are
intended to provide a processing structure similar to the structure of the brain. The
significant attributes of this structure are its parallel and distributed nature. This parallel
distributed processing (PDP) structure is a natural form for the modelling of adaptive control
problems. [Ref. 1]

This thesis will investigate the application of neural networks, also known as
neurocomputing, to adaptive control. The purpose of this investigation is to develop and
demonstrate a structure for the studyv of neural networks in adaptive control which is
consistent with adaptive control theory. In Chapter II, neural networks are introduced and

the Backpropagation neural network is presented. Chapter Il describes the two separate

functions of adaptive control--estimation and control. From control theory a controller
suitable for implementation in a neural network application is developed. The linear least
squares estimation process is then introduced and the concept of a neural network as an
estimator is described. Chapter 1V combines the theories of neural networks and adaptive
control to develop parallel distributed processing structures for estimation and control.
Chapter V describes the setup of this computational experiment. The system of longitudinal
motion for the A-4 aircraft is introduced as a system upon which to perform investigations
in the use of neural networks for estimation and control. Chapter VI describes specific
applications of these neural network structures to adaptive control. Chapter VII includes
some concluding remarks and recommendations for further study. The objective of this
thesis 1s to demonstrate the natural manner in which adaptive control problems can be

represented using neural network structures.

to

II. NEURAL NETWORK THEORY

Neural networks represent a revolutionary new way of computing. Biological systems
perform many tasks better than conventional computers. Artificial intelligence advocates
believe that the development of powerful software is necessary to capture the power of the
brain. Neural networks represent instead an attempt to imitate the capabilities of the brain
in hardware. Neural networks are based on the idea that the brain utilizes a computational
architecture different from that of the classical computer. An understanding of the basis for
this architecture will provide a framework for investigations in neurocomputing. In this
chapter, the theory of neural networks will be introduced. The concept of neural network
processing is developed first on an intuitive level and then specifics of neural network
architecture are presented. Following development of the neural network, the powerful
Backpropagation neural network structure is introduced. With the understanding of these
concepts, applications of neural aetworks to various problems may be easily understood.

More thorough discussions of neural networks may be found in [Ref. 2] and [Ref. 3].

A. NEURAL NETWORK PROCESSING

Examining the operation of the brain in the context of computer processing may help
to explain how neural networks work. The brain is a parallel processor. This parallelism
allows the brain which operates at about 100 Hz to outperform computers operating at nearly
1,000,000 times that speed. Processing in the brain is parallel on a massive scale., The human
neurological system contains billions of neurons. The brain is also a highly distributed
processing system. Contrary to the conventional concept of a Central Processing Unit, the
brain consists of numerous interrelated vet independent processors. These include not only
the various regions of the brain but the millions of neurons which make up the senses. The
processors in the brain are very simple compared to classical computers. By combining these

traits--massive parallelism, distributed processing, and simplicity--neural networks hope to

emulate the problem sols :ag characteristics of the brain. In this way, a neural network may

be thought of as a Massively Parallel Distributed Processor. {Ref. 2:pp. ix-xi]

B. NEURAL NETWORK ARCHITECTURE
Every neural network paradigm is composed of the same architectural components.
These structural and algorithmic factors include:
e A set of processing elements
e A state of activation for the network
e A pattern of connections
e An activation rule
e A propagation rule
e A learning rule
e An environmental interface
A network level illustration of the interaction of these elements is given in Figure |.
Computational processing elements which have some state of activation are connected in some
pattern which interfaces with the environment through input and output elements. A
depiction of the interactions of a single element is shown in Figure 2. Each element has an
activation function and connections which are controlled by propagation and learning rules.
These components will be described in detail below. [Ref.2:pp. 45-54]
1. Processing E.ements
Neural networks are composed of a number of simple computational units called
processing elements. All of these units act independently without the supervision of some
global control. Simply put, a unit receives data from some of its neighbors on its input side,
processes that data, then sends the result on to the same or other neighbors from its output
side. The system is highly parallel because the operation of each element may occur
simultaneously. Elements may have some physical significance or may be instead an abstract
construct of the neural network. In this way, processing elements may be divided into three

categories by their function. Input units represent access into the network from the physical

OCutput Patterns

Internal
Repressntation
Units
Input Patterns
Figure 1: A Typical Neural Network Structure
X .
o 1 = X Wji X ; summation
i
y, = f(1) transfer

: Y ;
Weigh transter,
. Output
W, path
x Processing
n element

Figure 2: A Typical Processing Element

world. Output units represent the results of network operation. Hidden units are the abstract
constructs developed by the system to solve the problem. From the viewpoint of control
theory, input units may be considered to be elements of an input variable, output elements
may be thought of as elements of an output variable, and hidden units may be conceived of
as elements of a state variable. In this way, the neural network may be considered as a

hardware implementation of state space and output equations. [Ref. 2:pp. 45-54]

2. State of Activation

The importance of these independent processors is that the elements represent
subsystems of the total problem, which may be summarized by the global state of the
network. At any moment in time, each processing element has a certain level of activation.
It is the pattern and levels of these activations which represents the state of the system at a
given time. The aggregate of these activations may be thought of as a multi-dimensional
array which carves out some surface in space. Processing in this type of network may be
thought of as evolving a system forward in time from some initial conditions to some steady-
state value. [Ref. 2:pp. 45-54]

Considering possible interpretations of the number five is a simple example of
the difference between this and classical computing. In a computer, the number five would
be represented by some code stored in a location in memory. In a neural network, the
number could be represented by the activations of five different processing elements, the
total of which is five. The problem might actually be how to optimally store five tons of
wheat in five grain elevators of different sizes. In this case, the activation of each element
represents the amount of grain in that elevator. It should be apparent that this distributed
processing form provides a more natural environment in which to solve certain classes of

problems.

3. Connections

If the activations of the processing elements may be thought of as the states of
the system, the connections may be thought of as the dependencies. These are the parts of
the network which determine which processing elements react with each other and in what
manner. A connection may be envisioned as taking the activation from the output side of
a processing element, operating on it, and transporting it to the input side of a neighboring
element. In most cases, the contribution of each element is considered to be additive.
Therefore, the input of any unit may be considered to be the weighted sum of the activations

of the units connected to its input side. More complex input weighting functions involving

products as well as summations have also been proposed. The structural dependencies of the
network are determined by these connections. [Ref. 2:pp. 45-54]
4. Activation Rule
: The activation rule determines the activation value of the processing element
given a set of inputs. Figure 3 gives an example of the complexity of the activation function
from the Neuralworks Professional II neural network development software. Activations may

be discrete or continuous, bounded or unbounded, stochastic or deterministic. Activations

Summation Transfer Output
Leaming Rule Function Function Scaling Limiting Function
WO
Sum Linear Direct
Wi Max Sigmoid | [| | cceemgpne Highest
. Min Sgn $X+ 0 / Two Highes!
¢ Majority BAM “| Adalne
Wh Product Perceptron _L_
elc. elc.
[
Noise
Hebb <
Kohonen Gr::\er-
olc. ¢ ©
4
Learning and Recal
Schedule
Recall
PE
Firing Rate
Input Clamp Enable
Temperature
Gain
Learning
Coefficient 1 ||
Coelficent 2 | |
Temperature
y Offset High Limi
[Super-Layer Scale Faclor Low Limit
Recall Cycie Counter
i cle t
Leaming Cycle Counter Competitive Inpuls

Figure 3: Neuralworks Professional Il Activation Function Logic

may contain a summation function, a transfer function, scaling, limiting, thresholding, and
competition. Through the use of complex activation functions the network may model a

variety of nonlinear systems. [Ref. 3:pp. 146]

5. Propagation Rule

The propagation rule is the precept which dictates how the activations of units
are transferred to the inputs of other units. All neural networks have a propagation rule.
This may be thought of the procedure for feed forward operation of the network. This rule
ties input elements, connections, and output elements together. It governs not only the
connection function, but the order in which connections are made, both architecturally and
by type. This succession may be sequential, by layer, random, or perhaps by the properties
of the connections or elements, The propagation rule regulates the feed forward operation

of the network. [Ref. 2:pp. 45-54]

6. Learning Rule

As the propagation rule may be thought of as the rule for the feed forward
behavior of the network, the learning rule may be thought of as the feedback rule. Some
networks do not use feedback and therefore require no learning rule. For networks which
do learn, this complex function changes the structure of the network to reflect given
interactions at each instant. The learning rule may change either the activations of the
networks processing elements or the connections between elements or both. This change is
based on the state of activations of the network, the network connection weights, and often
some desired result. Networks which attempt to map some input into a desired result are
known as supervised learning networks. Usually, the activations of the elements are allowed
to change during feed forward operation governed by the propagation rule while the learning

rule changes the connection weishts during feedback operation. [Ref. 2:pp. 45-54]]

7. Environment
The interface between the neural network and the environment is as important
as the network itself. Determination of such things as the number of inputs, the timing of
inputs, and the input character itself is extremely important. A neural network is not a
panacea for all problems, but a new form of processing tool to be used in applications where

both the problem and parallel distributed processing are understood. The consequence of the

—
-

importance of these design considerations is that the user of a neural network must be
familiar with both neural networks and the domain of the problem to be solved. [Ref. 2:pp.

45-54)

C. NEURAL NETWORK OPERATION

A neural network consists of numerous processing elements which are connected to
the environment through input and output units. These elements are attached by weighted
connections which are meant to represent some form of dependency. Each element also has
an activation function. Network operation consists of a feed forward phase and in some cases
a feedback phase. The feed forward phase is governed by the propagation rule. In this
phase, the activation of each element is altered in response to its connections, activation
function, and some input. The learning rule controls the feedback phase. In this phase, the
connection weights of an element are changed in response to its connections, the network’s
state of activation, and some desired result. Once this is complete, the process is repeated

until the desired outcome is achieved. [Ref, 3:pp. 3-10]

D. BACKPROPAGATION ALGORITHM

In the 1950's and 1960's, neurocomputing was in its infancy. Many successful, though
limited, applications of neural networks were developed. Most of these involved networks
using simple activation rules grouped into input and output layers. In 1969 Minsky and
Papert, two MIT artificial intelligence researchers, published a book called Perceptrons in
which they showed that networks must use hidden layers in order to sufficiently solve most
problems. Unfortunately, at the time, no learning rule or activation rule capable of
exploiting the power of hidden layers existed. Because of this, neurocomputing went into
a state of dormancy for nearly thirty vears. One major reason for the resurgence of interest
in neural networks is the development of the Backpropagation paradigm, a type of network
which successfully uses hidden units. The architecture, learning rule and activation functions
of a Backpropagation neural network combined give this network the capability to utilize

hidden layers in order to solve complex problems. [Ref. 2:pp. 11i-112]

1. Architecture

A Backpropagation neural network is laid out in a relatively simple,
straightforward manner. The processing elements are arranged in a number of parallel layers
including an input layer, an output layer, and any number of hidden layers. The elements
in each layer are usually fully interconnected with the elements in a previous layer as in
Figure 1. Any N-dimensional feature space may be represented with the use of a suitable
activation function and a sufficient number of hidden units [Ref. 4]. Operation of the
network involves presentation of a set of input-output pairs or patterns. This process is
known as supervised learning. The network first feeds forward the input to the hidden and
output layers. Then in the feedback phase, the error between the network produced result
and the desired output is used to alter the connection weights, or dependencies of the
network. This process may be imagined alternatively as carving out some N-dimensional
feature space, performing some massively parallel regression, or encoding the inputs into state
variables which are in turn combined to give outputs. It is the ability of the
Backpropagation neural network to capitalize on the capabilities of hidden units to represent

any feature space which makes it so powerful. [Ref. 2:pp. 318-328]

2. Backpropagation Learning Rule

The power of hidden layers is useless without a learning rule which can utilize
them. One problem with hidden layers has been determining how to distribute
responsibilities for network error. The Backpropagation learning rule does this by
minimizing a global cost function with respect to the connection weights in a least squares
sense. This is an implementation of a gradient descent procedure on the error surface in
weight space. The application of this concept to output layers is straight forward, however,
extension of the concept to hidden layers is more complex. [Ref. 2:pp. 318-328]

For elements in the output layer, minimization of the square of the errors is

derived in the traditional least squares fashion. The global square error cost function, J, may

be expressed as
I =4 5 ¥ (To(k)-X (k) (2.1)
where T (k) denotes some target output for pattern k and X (k) indicates the activation of
output element o resulting from pattern k. The output (activation) of an element is produced
using a function of the net input to the element
Xo(k) = £ (1(K)) (2.2)
where I (k) represents the net input to element o given by
I = 2 (Wi X)) (2.3)
where w_. is the weight connecting element i to element o and X; is the activation of element
i. The function f 1s known as the activation function. By changing the weights in proportion
to the derivative of the cost function, the error may be minimized. If the cost function is
to be minimized for each instant (pattern) and with respect to individual weights, the
derivative of J may be taken inside of the summations, allowing the subscripts to be dropped.
The derivative of the cost function can be broken down into three elements using the chain
rule
ﬂ = _aJ. i:_f .ﬂ’. (2.4)
where the first term denotes the derivative of the cost function with respect to the activation
function, the second term denotes the derivative of the activation function with respect to
the net input to the element, and third term denotes the derivative of the net input to an
element with respect to the weights entering the element. Solving for these terms gives
3l

—_— = (T, - X))
axX,

(2.5)

the error between the target output and the element activation for the first term using

equation (2.1) X,
— =f) (2.6)
al

O

the dertvative of the activation function for the second term using (2.2), and for the third

term using (2.3)

ol

(o]

ow

@7
o]
the activation of the element. By combining (2.5), (2.6), and (2.7) and adding a constant of
proportionality, ¢, the basis of the Backpropagation learning rule is defined
Awg =a b, X, 2.8)

where §_ is an error term defined as the combination of (2.5) and (2.6)

6o = (1) (To-X,) 2.9)
The constant of proportionality, a, is known as the learning rate. For elements in the output
layer, this algorithm is relatively straight forward. But how can § be defined for hidden
layers? This is the error assignment problem the solution of which makes Backpropagation
such a powerful technique. [Ref. 2:pp. 318-328]

The Backpropagation network assumes that each processing element is in some
way responsible for the error in the output. The learning rule operates much as the name
implies to distribute the error. By "backpropagating" the error along the same connections
and with the same weights used in the feed forward cycle, the network assigns a portion of
the error to each processing element. The learning rule for hidden layers is identical to that
for the output layer (2.9), with the exception that § for hidden units is defined as the
derivative of the activation function multiplied by the § backpropagated from the previous
layer, or

6= (1) o (W 6,) (2.10)
where the summation is over the elements to which the hidden element j is connected. The
subscript o need not denote the output layer, but can denote any layer to which the output
-f element j is connected. The Backpropagation network can thus be said to operate in a
similar manner to other neural networks. First, the input is fed forward through the network
to determine the output activations. These activations are then compared to the desired

outputs and the error is fed back through the network. Finally, the weights connecting the

elements are changed using the learning rule and the fed back error. The true power of the
Backpropagation network lies in its ability to use hidden layers. [Ref. 2:pp. 322-328]

One drawback to the use of a gradien. descent method for learning is that the
network training follows a very jagged path in the error-weight space. This is obvious when
one considers that the probability of two consecutive error vectors in weight space pointing
in the same direction is zero. Therefore, the network tends to wander about in weight space,
oscillating across the optimal path to a global minimum. One solution to this problem is to
average the current estimate of the proper direction with past estimates. This is accomplished
by adding what is known as a momentum term to (2.9)

AWOJ(I+]) =ad, X +H Awoj(t) (2.11)
where p is another constant of proportionality. In the past « and u have been determined
empirically, however the results of recent research recommend a number of ways to statically

and dynamically determine appropriate values for these constants. [Ref. 2:pp. 329-330]

3. The Backpropagation Activation Rule

The activation function used in this type of neural network must be compatible

with the learning rule described above. This implies that the activation rule must be
differentiable over the entire range of possible values. Another desirable characteristic of
an activation function is that the function have a unigue output value for a given input
value. Monotonic functions have unique output values for given inputs with the added
advantage that the behavior of the activation function is predictable (an increase in the input
always implies an increase in the output.) Tyvpically, the input to a processing element (2.3)
is defined as the weighted sum of the activations of the elements connected to its input side
1=G* Z (wy; X)) (2.12)

Where G is some gain added as a scaling factor. At first glance, a linear activation function

appears to be ideal. The output value, or activation, of a processing element using the linear

activation function is simply

f(1) =1 (2.13)
where the subscript i is dropped for convenience. The derivative of this function is simply
a constant, which can be absorbed in the learning rate (proportionality constant) defined
above. However, as Minsky and Papert proved, linear networks are only capable of
representing linear systems. They can not exploit the power of hidden layers. Neural
networks utilizing the semi-linear functions capitalize on the strengths of the linear function
and the use of hidden layers. Two semi-linear functions are the sigmoid and hyperbolic

tangent functions. For the sigmoid function (shown in Figure 4), the activation is

1
f(l) = ———v (2.13)
1+e!
Sogm L3S &r.or unction
1 T T —r
/
o 9[.... // .
o8- P [T SO PP U SO PP SRS O PO U OTROY —
!
! //
ook R R SR i
;
3 0 & -
a
|
. osh) n
¢ |
€ |
z]
w C 4 ~
0.3+ /‘ ~
/
/
0 2k e 4
/
/
e Gan = 1 0
O A e e -
e
|
Ol B P, - - —i — 1
] € a 2 L < “ 33]
€ oemer ong e

Figure 4. Plot of the Sigmoid Activation Function

14

and the derivative is

ol
() = ———r (2.14)
(1+ehy
or in terms of the original function
f{(1) = fd) * (1 - £f(1)) (2.15)

Notice the sigmoid is limited to values between 0 and 1. Perhaps a better activaticn, due to

its range, is the hyperbolic tangent activation function (shown in Figure 5)

f(I) = - (2.16)
€ +¢€

Hyperbdei L Tan@ent ACtivat:on Function
T T T

T - 7
I
s // ... §
06— /j e e _1
/
0 4 ,/,/, _‘
: !
| /
- ¢ 2!, R / - —
a 3 .
5 | !
2 1
. Cl,. /]
19
¢ /
Pl
T R [et _
[J |
| / !
/
-G 4l 7 —7
3 ’ !
|
-q sL—‘ -
i 1
! |
| Ga:n 10 |
-C 8"" —*I
o !
I //
_,‘! i __1/ : ! 1 1 A
-4 -2 < c * '3 3 4

Element 1nput

Figure 5. Plot of the Hyperbolic Tangent Activation Function

15

whose derivative expressed in terms of the original function is

(1) = (1 + (1) * (1 - £(1)) (2.17)
These activation functions share two very important qualities. First, by expressing the
derivative in terms of the activation function, a large amount of computation time is saved.
Second, these non-linear functions approximate linear functions over some central region
while guaranteeing stability at its extremities. These are the most widely used activation
functions. [Ref. 3:pp. 161-163]

Another proposed activation function is the sine wave. This may be thought of
as performing some type of "Generalized Fourier Analysis." It is thought that a neural
network using sine wave activation functions may perform some modal decomposition,
discovering important spectral components of the function described by the input-output
pairs. Research is ongoing in this area. [Ref. 3:pp. 449-450]

4. The Power of the Backpropagation Neural Network

The power of the Backpropagation neural network rests in its extension of
classical methods to the use of hidden constructs. By using the concept of a gradient descent
search algorithm, the Backpropagation neural network incorporates all of the theory
developed for these types of algorithms. At the same time, using parallel processing and
hidden layers, the Backpropagation neural network is capable of extending its scope beyond
that of linear systems to that of any N-dimensional system. The are a number of similarities
between the Backpropagation network and traditional methods of estimation.

In this chapter, the theory of neural networks was introduced to provide an
understanding of this processing tool. An intuitive approach was first described, followed
by a detailed description of the building blocks of a neural network. Following a summary
of the operation of a neural network, the Backpropagation neural network was introduced
and important characteristics described. Finally, the power of the Backpropagation neural
network was outlined. As will be seen in the next chapter, the concepts behind
Backpropagation are very closely related to those of adaptive control, especially the

estimation process.

III. ADAPTIVE CONTROL THEQRY

From a general perspective, an adaptive controller is one which changes the control as
it perceives changes in the environment or system. The need for adaptive techniques arises
when a system and its environment can not physically or practically be completely specified.
The general definition given above suggests that adaptive control may be divided into two
functions--a model estimation function and a control function. The basic layout of an
adaptive controller is given in Figure 6. The separability of the two tasks illustrated in the
figure permits the adaptive control designer to select from numerous control techniques and
estimation methods. For the purposes of this thesis, the concentration will be on the control
and estimation of deterministic systems. These are systems in which noise is relatively
unimportant with respect to modelling errors. In this chapter the relatively simple one step
ahead control algorithm will be used to introduce a general controller followed by an
examination of the linear least squares estimator. Further information on the topic of
adaptive control is available in [Ref. 5] while specific information on estimation is available
in [Ref. 6]. As a summary, the natural way in which neural networks represent these

techniques will be delineated.

A. ONE STEP AHEAD PREDICTION CONTROL

One step ahead prediction control is defined as that control necessary to bring a system
to some desired state in one step. For most control applications it is assumed that the system
under consideration is linear, time-invariant, and causal. Of the many equivalent models of
this type for a system, the simplest to use in developing adaptive control algorithms is the
discrete time deterministic autoregressive moving average (DARMA) model. The DARMA
model is characterized by the equation

A(q) x(t) = B(qg) u(t) (3.1)

Disturbances

Inputs Outputs

System _._i>

— Parameter K—
estimator]

Parameters

Control law

Objectives

Figure 6: Adaptive Control Structure
where
A(g) =T+ Aya) + AXa) ...
B(q) = By + By(q) ...
and A(q) and B(q) are matrix polynomials in the backward shift operator, q’l, y(t) is the
system output, and u(t) is the system input. The DARMA model is roughly equivalent to a
transfer function or a controllable-observable state space representation of the system [Ref.

5:pp. 7-40). If a single input single output (SISO) DARMA model is expanded in the shift

operator and rearranged the equation becomes

y(t) = byu(t-1) + byu(t-2) ... - a;y(t-1) - a,y(t-2) ... (3.2)
This equation can be used as a predictor for the output at the next time step

y(t+1) = by u(t) + by u(t-1) ... - a, y(t) - a, y(t-1)... (3.3)
where y(t+1) indicates the predicted value for y(t+1). Equation (3.3) can be used to
determine the control input required to bring the system to a desired value y,(t+1) in one
step by replacing the variable y(t+1) with the desired value y4(t+1) and solving the equation
for u(t)

u(t) = 1/b; {yg(t+1) + a; y(1) + a, y(t-1) ... - by u(t-1) ... } (3.4)

This is known as one step ahead prediction control. [Ref. 5:pp. 118-171]

The one step ahead prediction control law is the result of the minimization of the

quadratic cost function

J(O) = 4 {y(+]) - yy(te1))P (3.5)
A variety of cost functions of the same form may be developed using different forms of the
input and output variables. The consequence of this is that the control law in (3.4) may
represent any number of different control strategies. [Ref. 6:pp. 461-481]

Using this concz2pt of many strategies being represented by one form of controlier
introduces the idea of a general control structure. In (3.4) the y,(t+1) term may be
conceptualized in a number of different ways. In general, it may be thought of as some
reference input to the system. This implies some type of tracking control. If this reference
input is generated by some reference model, the one step ahead controller becomes a model
reference (MR) controller. If the past values of u(t) and y(t) are thought of as state variables,
the one step ahead controller becomes some type of state variable feedback with a reference
input controller

u(t) = K(t)x(t) + r(t) (3.6)
All of these controller types have the same basic structure, the only difference is in the

determination of the relevant parameters. The vector of past inputs and outputs in equation

(3.4) becomes the state variable in equation (3.6) to provide a controller for an adaptive
algorithm. {Ref. S:pp. 118-171}

One step ahead control provides a simple method of introducing a general controller
structure. Using the vector of past input and output measurements as some state vector, the
idea of a controller based on the weighted sum of state variables and a reference input may
be developed. Equation (2.3) defines the input to a neural network processing element to be
the weighted sum of the element activations connected to its input side. Thus a neural

network processing element may in some way represent this general form of controller.

B. LINEAR LEAST SQUARES ESTIMATION
Adaptive control is composed of two functions, estimation and control. Numerous
techniques exist to develop estimators for systems, however, the majority involve extensive
off line computation. By far the largest category of on line estimation techniques develops
estimates of the system parameters based on minimization of quadratic cost functions similar
to that used in the development of the one step ahead controller. By deriving one form of
these linear least squares estimators, the recursive least squares method, a general structure
for estimation will be developed.
The derivation commences with the SISO version of the DARMA model introduced in
equation (3.1). Upon expansion, this expression is equivalent to
y(t) = 3 b u(t-j) - 3 a y(t-k) (3.7)
where the index j represents dependencies on past input measurements and the index k
represents dependencies on past output measurements. Since this is a linear, time invariant
system the coefficients, a, and bj, and the past input-output data may be grouped separately
to give
y(t) = 67 g(t-1) (3.8)
where # is called the parameter vector defined by

§=[byb, b,.. a5 2a,3a;.] (3.9)

20

and ¢(t-1) is a the regression vector containing past measurements of the input and output
#(t-1) = [u(t) u(t-1) u(t-2) ... -y(t-1) -y(t-2) -y(t-3)...] (3.10)
Using this relationship, the value of y(t) at a future time may be predicted as in (3.3)
y() = 67 g(1-1) (.11)
The error in this prediction is used in a quadratic cost function to determine some optimal
value for 6. [Ref. 6:pp. 51-59]

A linear, time-invariant, deterministic system has a single parameter vector but many
regression vectors, each representing measurements made at a given time step. Therefore,
a quadratic cost function in the prediction error can be formed using equation (3.11) and the
measured output at a given time t

JO) =+ T, () - 67 gt-1))° (3.12)
where t covers the range of the N measurements made. Differentiating with respect to the
parameter vector, 4, and setting the result equal to zero results in an expression of the form

© = [I/N T, (1) ") I/N T, (1) y(1) (3.13)
where © is the estimated parameter vector [Ref. 6:pp. 176-181]. Making some assumptions
on the content of the result of this summation and applying the matrix inversion lemma three
equations for determination of the parameter vector © are obtained
O(t+1) = ©(1) + L(1) (v(V) - ©'(1) $(t-1)) (3.14)
L(t) = P(t-1) t-1) [1 + ¢'(t-1) P(t-1) ¢(t- D))

P(t-1) ¢1(t-1) ¢(t-1) P(t-1)
P(t) = P(t-1) -

L+ ¢l (t-1) Pae-1) $(1-1)
where P at time zero is some positive, definite matrix representing the confidence in an
initial estimate © at time zero. The first equation is a predictor-corrector equation while
the second and third equations represent some method of changing the estimation gain. This
is known as the recursive least squares estimation method. The equations (3.14) are easily
expanded to the multivariable case. This isa very robust form of estimator. [Ref. 6:pp. 303-

310]

A more general form of this predictor corrector equation is the basis for all least

squares parameter estimation schemes. This equation is

O(t+1) = 6(t) + M(t) ¢(t-1) e(t) (3.15)
where the terms in the equation are defined as

M(t) - the algorithm gain

¢(t-1) - the regression vector

e(t) - the prediction error
Similar in context to the general structure developed above for controls, the gain, regression
vector, and prediction error used in the least squares estimator result from the particular cost
function which is minimized and the various assumptions made about the character of the
estimation process. The gain term can vary from a scalar constant to a large covariance
matrix as seen in (3.14). The regression vector and prediction error may likewise take on a
number of different forms. [Ref. 5:pp. 47-100]

One significant factor in this derivation is the fact that the Backpropagation learning
rule in equation (2.8) is similar to the general form of the linear least squares parameter
estimator in equation (3.15). In fact, a neural network with a linear activation function is
a parallei distributed processing implementation of the general linear least squares estimator.
The theorems and proofs applicable to least squares estimation are in a general sense
applicable to the Backpropagation neural network. Another major factor concerns the
structured form of both the estimation algorithm developed above. This suggests that the
capability of neural networks to naturally represent structured problems may prove useful

in estimation applications.

C. NEURAL NETWORKS AND ADAPTIVE CONTROL

By combining the control and estimation algorithms described above, an adaptive
controller may be constructed. The control law determines control inputs using the estimated
model as if it were the true model. More importantly from the point of view of neural

network applications is the general structure developed for control and estimation. For the

ol

e

controller, the input is generated as some weighted sum of terms in a regression vector. In
the case of model reference adaptive control (MRAC) shown in Figure 7 these weights are
determined by minimizing the error between the network predicted output and the mode!
reference output. [Ref. 5:pp. 199-202} For the estimator, the predicted output is also some
weighted sum of the terms in a regression vector. In this case, the weights are altered to
minimize the error between measured and predicted output. Considering these factors as
inputs, weights, and outputs it appears that a Backpropagation neural network would provide

an intuitive structure for the solution of adaptive control problems.

Relerence
input + System .
-r_‘ dynamics x >

Adaptation
mechanism
Refersnce + 18 _
model -
y

Figure 7: Model Reference Adaptive Control Structure

23

IV. NEURAL NETWORK ADAPTIVE CONTROL STRUCTURES

In this chapter the concepts of Backpropagation and adaptive control developed thus
far will be combined to produce two structures for neural network adaptive control. As
earlier introduced, adaptive control can be divided into two separable tasks, estimation and
control law synthesis. The estimation process involves the mapping of inputs to outputs. The
ability of a Backpropagation neural network to accomplish this is evident. The application
of Backpropagation to control law synthesis is more complex. The idea of a generic control
law involving the weighted sum of state variables and a reference input was advanced in the
discussion of control theory. At the same time, the notion of Model Reference Adaptive
Control was presented to provide some target output. Linking these concepts, the control law
synthesis may be viewed as the mapping of state variables and reference inputs to a model
reference output through some predetermined model. In the paragraphs that follow, two
methods of separating the tasks of estimation and control in a Backpropagation neural
network structure are proposed. The first involves a spatial separation, the functions are
performed in parallel. The second utilizes temporal separation with the estimation and

control duties accomplished sequentially.

A. PARALLEL STRUCTURE

In the parallel approach to neural network adaptive control, the estimation and control
responsibilities are physically separated within the neural network. This is similar to the
principle of certainty equivalence [Ref. 7]. A network demonstrating this structure is
presented in Figure 8. The network on the left in the figure performs the estimation
function. The purpose of this network is to map measured inputs to measured outputs.
Though this network is composed of a single linear layer, multiple layers with varying
connections and activation functions could be used. As long as the composition of the input

and output layers remains constant, the internal structure can be varied in any manner.

Parallel Structure Neural Network Adaptive Controller

Model

L

~ .-

T

Figure 8: Parallel Neural Network Adaptive Controller

Control law synthesis is provided by the network on the right in Figure 8. This

network contains two structures. The middle two layers are an exact duplicate of the

estimation network on the left, and represent a black box model of system operation. The
weights in this structure are fixed as far as the control process is concerned. They are
obtained through links to the estimation network. As the estimation process progresses, the
model in the control network is continually updated. The control process is represented by
The input layer is composed of the state

The

the two external layers added to this model.

variables and reference input whose weighted sum makes up the control input.
additional output layer provides the desired model reference output. This network maps the
state variables and reference input into a control input which is propagated through the
internal model. The resultant predicted output is compared to the reference output and the

error is backpropagated through the model. This error is then used to change the weights,

25

or gains, on the controller inputs. In essence, the estimation network generates a simulation
of the system while the control network used this simulation to generate control inputs. The

paraliel nature allows the network designer a large amount of flexibility.

B. SEQUENTIAL STRUCTURE

The sequential neural network adaptive controller structure is a derivative of the
control network on the right in Figure 8. Since the structure for the estimator and the
controller exist in the control network, both functions can be performed by one network if
they were separated temporally [Ref. 8]. The basic concept for a linear network applied to
a third order SISO system is demonstrated in Figure 9 and Figure 10. Operation of this
network involves completion of the estimation function as a measurement is made followed

by generation of the next control input during the inter sample period. In the estimation

Sequential Structure Neural Network Adaptive Controller: Estimation Phase

Loezziett

lu(t—l) lu(t*2) lu(t—B) l—g(t-l)l-u(t-Z)l—u(t-3)
lr(t) lu(l'l) lu(t—Z) l'g(t) l‘y(t‘l)l‘g(t-ZP

Figure 9: Sequential Neural Network Adaptive Controller; Estimation Phase

Sequential Structure Neural Network Adaptive Controller: Control Phase

refCt+1)

...........

ult-17 ut-22 “ys(t-10 |my(t-2>

-~
hall I

ult=1) Judt-2) |-yt “y(t =12 [~yCt-2>

Figure 10: Sequentia! Neural Network Adaptive Controller: Control Phase

phase, the outer layers of the network in Figure 9 are inactive. At a given sample time, a
measurement of the output of the system, y(t), is made. It is assumed that the control inputs,
u(t), are known. Using three past measurements of the output and three past known control
inputs, an input vector for the network is assembled similar to the regression vectors
discussed in Chapter I11
$(t-1) = [u(t-1) u(t-2) u(t-3) -y(t-1) -y(t-2) -y(t-3)] (4.1)
This is the vector which is applied to the lower middle layer of the network in Figure 9.
This input vector is propagated forward through the weights in the network. Since the

activation function of the element labelled y(t) is linear, the activation of the element is equal

27

to its input or

y(t) = Wop U(t=1) + Woy U(t-2) + Wag U(t-3) = Wy, y(t-1) ~ wos Y(t-2) ~wy y(1-3) (4.2)
where Wi is the weight connecting element j in layer i to the output element y(t) and y(t) is
the network prediction for y(t). These weights are identical to the system coefficients
contained in the parameter vector

6(t) =[b, b, bya; a, a5] (4.3)
The error between the measured value for y(t), used as a target for the network, and the
predicted value y(t) is backpropagated through the network using the learning rule
Aw,=a X, $ (4.3)
where the X, are the elements in the regression vector, or input layer, and § is the error in
the prediction. The learning rule is identical to the algorithm used in the general least
squares parameter estimation method. The linear neural network estimator shown in Figure 9
is a parallel distributed processing implementation of the least squares parameter estimation
algorithm with the parameters identical to the weights, the inputs identical to the regression
vector, and the output element(s) identical to the measured output(s).

In the control phase, the outer two layers in Figure 10 become active. The weights
determined in the estimation phase are frozen to provide the network with an internal model
of the system. The input vector is updated by the addition of the measured value y(t) and
some reference input r(t)

¢(1) = [r(t) u(t-1) u(t-2) -y(1) -y(t-1) -y(t-2)] (4.4)

This input is then combined in some weighted sum to create an input u(t) which is physically
applied to the system

u(t) = T wy; ¢(0) (4.5)

where the ¢J(t) are the elements in ¢(t). With the exception of r(t), the other regressors in

equation (4.4) are fed forward to create a predicted regression vector as seen in the second

layer in Figure 10. This predicted input is propagated through the fixed model to determine

a predicted value for y(t+1) in the third layer. This value, y(t+1), is fed forward through a

fixed weight of one and compared to the model reference value for time t+1. The error

28

between the prediction, y(t+1), and the reference value is backpropagated through fixed
weights until it reaches the control input u(t), where it corrects the weights, or controller
gains, between the first layer and u(t). A new measurement of the output resulting from the
input of u(t) determined from equation (4.5) is then made and the estimation process is
repeated. The controller gains for this network are determined in some least squares sense
from the error between the network predicted output and the model reference output.

In this chapter, the concepts of estimation and control are represented in two natural
structures for the study of neural networks in adaptive control. Through the use of linear
activation functions it has been shown that a neural network adaptive controller is a parallel
distributed processing implementation of the general controller and linear parameter estimator
developed in Chapter I1I. Each structures has its own strengths and weaknesses. The parallel
structure offers more flexibility while the sequential structure uses less elements. In

following chapters, these structures will be applied to specific adaptive control problems.

V. EXPERIMENTAL SETUP

Before considering specific applications of these neural network adaptive control
structures, a number of experimental setup considerations must be discussed. First to be
described is the computing platform used in the investigations. Next the system to be
controlled and identified, the longitudinal motion of the A-4, will be introduced followed
by consideration of how this system is effected by a number ot adar *ive control design issues.
Important control design concepts include controllability and observability, stability and
tracking performance. Estimation design concepts include input-output selection and model
selection. Finally, a discussion of how to determine the validity of the model or controller
developed. An understanding of these concepts is necessary to provide a frame of reference

from which to evaluate the networks demonstrated in the next chapter.

A. HARDWARE-SOFTWARE PACKAGE

Research for this thesis was conducted on a Sun Microsystems, Inc. Sun 386i/250
workstation using the Neuralworks Professional 11 software package by Neuralware, Inc. No
true parallel distributed processors are commercially available, so it is necessary to simulate
neural network operation using software and high speed centralized processors. The
requirements for hardware include large memory capacity and high speed to adequately
emulate a paraliel distributed processor. Software requirements include an open architecture,
provision for multiple network types, flexible input-output, ease of network modification,
user-friendliness, size, and speed. The combination of the Sun and Neuralworks have proven
to be the best system to meet these requirements.

The Sun 386i/250 is an 80386 32-bit processor workstation operating at 25 MHz to
produce performance in the range of five million instructions per second (MIPS). The system
used for this investigation was configured with 16 ML of memory, one 34 inch floppy drive,
a + inch tape drive, VGA adapter, and a 16 inch monitor. With the use of Neuralworks

software, the Sun is capable of generating networks with up to 20,000 elements and !,500,000

30

connections operating at a rate of 45,000 connections per second. The flexibility of the Sun’s
operating system proved to be as important as the speed and memory size. SunOS provides
a multitasking windowed graphical environment on top of the powerful UNIX operating
system. In addition through the use of DOS windows, SunOS allows multitasking using DOS
applications as well. This provided the capability to train multiple networks at the same time
data manipulation was being conducted using both UNIX and DOS programs. No practical
neural network research may be conducted without the memory capacity and speed of the
Sun/386i. For the same price as a similarly configured IBM-compatible 80386 machine, the
Sun offers more power and flexibility. [Ref. 9]

Hardware power and flexibility are useless without equally powerful and flexible
software. The Neuralworks Professional II neural network development system by
Neuralware, Inc. offers the required flexibility and power. The complexity of applications
offered in Neuralworks ranges from fully developed example networks, to instant generation
of standard network types, to user customization of networks at the elemental level. Nearly
two dozen standard network types are available. Input-output may come from keyboard
input, formatted ASCI! files, various spreadsheet formats, or user defined modules written
in the C programming language. Network structures may be saved in ASCII for portability
between systems. The ability to perform network diagnostics and monitor internal network
dynamics is provided by the use of "probes’ and ’instruments’. These software constructs may
be used to graphically display or store for future use a number of important network
parameters during the training process. Neuralworks allows customization of the network
topology, neurodynaimcs, and network control strategy. Neuralworks Professional Il is a very
powerful flexible neural network development system. [Ref. 10]

Neuralworks accomplishes this flexibility through the interaction of a number of basic
modules. The main executable program contains code for the generation and operation of
a network, including processing element definition, learning rules, activation functions, and
a number of utilities. The architecture of a network, once created, may be saved and later

retrieved using a network data file. The example networks which come with the package are

31

contained in network data files. Input-output may be provided to the network in different
ways. The main executable module contains a utility for inputing data from a number of
different spreadsheet types. Complementing this is the ability to write an executable module
called USERIO in the C programming language to generate data. Neuralworks provides a
built-in USERIO program to input data from formatted ASCII files. To control the
sequencing of input-output, propagation, and learning, Neuralworks employs user definable
control strategies. Default strategies are provided for all of the standard network types.
Other modules which interface with the main executable include data files for gain schedules,
style sheets, and output data. Prototypes for the control strategies and USERIO programs
used for this investigation are included in Appendix A. [Ref. 3]

Another software package used heavily in this research is the Pro-MATLAB interactive
scientific and engineering program by the Mathworks, Inc. This program was used for all
of the data generation, processing, and display used for this thesis. Written in C, MATLAB
provides easy access to software developed by LINPACK and EISPACK, as well as graphics,
programmable macros, IEEE arithmetic and numerous signal processing and control
subroutines. Without MATLAB, the data processing requirements for this investigation
would have become extremely tedious. [Ref. 11]

The Sun 386i/250 and Neuralworks Professional Il combination provide an outstanding
testbed for the study of any neural networks applications. The combination of speed,
flexibility, power, and a user friendly environment make this combination just about the best
for the study of neural networks. Also worthy of note is the contribution provided by

MATLAB by Mathworks, Inc.

B. LONGITUDINAL MOTION OF THE A-4 AIRCRAFT

The system selected for use in this investigation is a simulation of the longitudinal
motion of the A-4 aircraft. The complexity of aircraft motion is discussed at length in
[Ref. 12] and [Ref. 13]. The system and some of its important characteristics, as well as the

manner in which it was simulated will be briefly described below. Through the use of a

number of assumptions, the most significant of which is the assumption of small
perturbations [Ref. 12:pp. 84-127], the complex motion of an aircraft may be reduced to
uncoupled sets of linear equation for lateral and longitudinal motion at specified flight

conditions. The longitudinal equations of motion may be expressed in state space form as

x(1) = Ax(t) + Bu(1) (5.1)
y(t) = Cx(t) + D u(t)
where the state variable is defined by
u(t) -- airspeed perturbation (5.2)
x(t) = |aft) -- angle of attack perturbation

q(t) -~ pitch rate perturbation
(1) -- pitch angle perturbation |

the input variable is defined as
u(t) = &(t) -- elevator deflection (5.3)

and the output variables are scaled versions of the state variables. The A and B matrices are
constructed for a given flight condition (altitude and mach number) from the aircraft’s non-
dimensional stability derivatives, mass, moments of inertia, altitude and airspeed. The C
matrix is a diagonal scaling matrix, and the D matrix is the zero matrix. Descriptions of this
process are contained in [Ref.12:pp. 167-196] and [Ref. 13:pp. 112-144].

This system was selected for this application because it exhibits a number of interesting
characteristics. It is a higher order, multiple output system. The natural time constants of
the system are of different orders of magnitude. The response of the variables u(t) and é(t)
is dominated by low frequency dynamics, while the response of a(t) and q(t) is predominately
high frequency. The frequency response for the aircraft at sea level and mach 0.4 is shown
in Figure 11. The low frequency, or phugoid, modes have a natural frequency on the order
of 0.015 hertz for a time constant of approximately 66 seconds. The high frequency, or
short period, modes have a natural frequency on the order of 0.5 hertz for a time constant

of 2 seconds. By using several linear models for different flight conditions in the simulation,

33

A-4 LONgrtud:inal Moti10n Frequency RespoONnse
10?2 —r T T T T r———T T T T
102 ;‘J\ ‘ B
R T D et hed il N ‘.'-. - N C
N
R }_ B
10 ,
/ ~.
s TS .
~.
// \\
.
g]
’, —{
10° e
/’ >
'r/ \\\
® - .
3 el N
CRN .
4
o
o
2
1072 7
207 . -1
A
.
Claw —
iy -
10 aipnaCt) _ _
a(ts - -
theta(t)
10_, 1 o S A4t " 4 S S S W S W L e d A 11 113 A A i A J) 3}
1p7? 1t A 10° 10"
Sea Leve!l Frequeniy (Hertzl Macn Qg 4«

Figure 11: A-4 Frequency Response
a crude form of non-linearity may be introduced. The five different linear models depicted
in Table I were used for this investigation. The manner in which these system characteristics

effect the adaptive control process will be addressed after the simulation process is described.

Table I Flight Conditions Selected for Study
L]

Flight Condition Altitude Mach Number
Condition | Sea Level Mach 0.4
Condition 2 15,000 ft Mach 0.5
Condition 3 35,000 ft Mach 0.6
Condition 4 35,000 ft Mach 0.8
Condition 5 Sea Level Mach 0.8

The simulation was carried out through the use of a recursive algorithm in the USERIO
program. Continuous state space models (5.1) for each of the five conditions were developed
using data from [Ref. 13:Appendix II] and converted to difference equations (3.3) for each
state. A sample of the MATLAB script file used to generate this data is included in
Appendix B. The values used for the continuous state space models and discrete transfer
functions are given in Appendix C. Further description of the computations performed
may be found in the Pro-MATLAB reference manual [Ref. 11]. The process involved first
scaling the states using the C matrix then developing a balanced realization to ensure better
conditioned matrices. These matrices were then converted from a continuous state space to
a discrete state space model using a matrix polynomial algoritium. This discrete state space
model was then converted to a discrete matrix polvnomial transfer function using

H(z) = C (zI - A)! B = Y(2)/U(z) (5.4)
The z-transform may be replace with the ! operator and the resulting function may be
divided into numerator and denominator terms to obtain the DARMA model equation

A(q) y(t) = B(a) u(t) (5.5)
or by a simple rearrangement

y(t) = B(a) u(t) - (Afaq) - 1) ¥(1) (5.6)

or, upon expansion of the matrix polynomials
bua™ + b0 + b,307 + bya”
¥(t) = by + 1,507 + bysa + biaut) - (a7 +aat v aa” vaqt] w57

bq]q'1 + quq'2 + bq3q“3 + bq4q'4

beia™! + bsa? + bya” + byya”

The delay operator terms in this system of equations are then expanded and the equations
are rearranged to obtain four separate recursive equations of the form

y(t) = 3 [b; u(t-D)] - 37 [a; y(t-i)] (5.7)
where the y; terms indicate the outputs u(t), a(t), q(t), and ©(t) and the four a, terms are

duplicated for each of the four equations. The 20 parameters from equation (5.6) along with

35

equation (3.7) combine to make the algorithm used in the USERIO program to recursively
simulate the longitudinal motion of the A-4 aircraft. The trequency response of this discrete
simulation for the condition at Mach 0.4 and Sea Level with a sampling time of 0.1 seconds

is given in Figure 12. The coefficients for the B(q) and (A(q) - 1) matrices for this condition

A-4 LONQItUGINB! MOt 10N DisCretle Simuiation Frequency Response
10° T T T YT T Ty T T T T TrTrTTYT
L] - =1
10 F. _______
1wt 1
. ig 2 -4
o
3
-
<
o
e
2 o b .
1070 P p
u(t) J—
atpha(t)
1wt P a(ty - - .
thets(t)
101\; . —a e N PR " N G WY e
107? 1wt wot 16° 10"
Sea Leve: Fregquerniy (Mertz) Macn 0 4

Figure 12: Frequency Responce for Discrete A-4 Longitudinal Motion Simulation
and sampling rate are given in Table I1 where the position of the coefficients match those in
equations (5.6) and (5.7). These coefficients are relatively numerically ill-conditioned. With
the six decimal place precision of the Neuralworks Professional II software it will be difficult
to characterize the u(t) terms in B(q) (the {irst row in Table 1I) which are on the order of 10
5. The same is true to a lesser extent for the other terms in B(q). At the same time, there
is a large difference in relative magnitude between the (A(q) - 1) terms and the B(q) terms

for each output. The ill-conditioned nature of this problem can make it difficult to

determine a good model for the system.

36

Table II: Parameters for Flight Condition Sea Level/Mach 0.4 with a Sampling Time

of 0.1 Seconds
|

B(q) = 2.7131e-05 7.7248e-05 -7.0558e-05 -2.2579e-05
-3.4619e-02 4.5022e-02 1.3715e-02 -2.4124e-02
-1.9864e-01 5.8002e-01 -5.64}4e-01 1.8276e-01
-7.7052e-03 7.4781e-03 6.9640e-03 -6.7386e-03

(A(q) - 1) = -3.6949e+00 5.1802e+00 -3.2755e+00 7.9021e-01

e e e)
C. EXPERIMENTAL DESIGN CONSIDERATIONS

A number of design issues must be carefully considered in the implementation of a
neural network adaptive controller. These concerns are driven by the complex
interrelationships between the system, the controller, and the estimator. The experimental
setup is controlled in large part by these matters. Failure to address these topics may result
in a failure of the neural network controller. The manner in which system, control, and
estimation concerns effect the design of the neural network adaptive controller are discussed

below.

1. Control Design Issues

A number of different factors must be considered in the design of a adaptive
controller. In order for the estimator to function, the system must be observable. In order
for the controller to work, the system must be controllable. Systems, such as the longitudinal
motion of the A-4, which can be expressed as transfer functions are both controllable and
observable. For this controllable, observable system, some control objective must be
formulated. The neural network adaptive controller was conceived as a type of model
reference adaptive controller. The USERIO module generates a model reference output using
the parameters for the flight condition at 15,000 feet and mach 0.5 in parallel with the
simulation. This condition was chosen because it is relatively close to the center of the flight
envelope determined by the other four flight conditions. The control objective is to track

this reference output. [Ref. 5:p. 152]

Stability is also an important issue. The poles and zeros of A(q) and B(q) for the
simulation at Condition 1 (Table II) are given in Table II. Note that u(t) has a zero outside
the unit circle, q(t) has a zero on the unit circle, and «(t) and 6(t) have poles very near the
unit circle. These zeros are or potentially may become non-minimum phase. This will cause
the inverse of the transfer function to be unstable, requiring infinite or non-causal control
for exact tracking. At the same time, an offshoot of the concept of controllability is that an
independent input is required to exactly control an independent output. For this system,
there is a single input with four outputs. The solution to these two problems is to use some
non-exact form of tracking. In the neural network adaptive controller, the non-exact
tracking is handled in two ways. First, the control input activation function can be limited
to a certain value. This simulates control saturation. Second, the control gains are

determined in some least squares sense using the Backpropagation learning rule similar to the

Table III: Poles and Zeros of the Discrete Simulation for Condition 1 with a Sampling

Time of 0.1 Seconds
L |

poles = 0.8482 + 0.26811
0.8482 - 0.2681i
0.9993 + 0.0096i
0.9993 - 0.0096i

Zeros,) = -3.5191
0.9270
-0.2551

8108,y = 0.9992 + 0.01001
0.9992 - 0.01001
-0.6979

Zeros, .\ = 1.0000
a© 0.9986
0.9213

Zer0sy) = 0.9986

0.9219
-0.9500

38

method used by conventional optimal control. The purpose of optimal control is to achieve
the best possible non-exact tracking given certain constraints in a least squares sense.
Through the use of a type of optimal control and control saturation, the neural network
adaptive controller should be unaffected by the presence of unstable inverses in the system.

[Ref. S:pp. 157-163]

2. Estimation Design Issues

Although based on the same principles, the estimation design considerations for
this investigation are more complex than those for control. The goal of an estimator is to
develop a model of a system for a specified purpose. For use in the neural network adaptive
controller, the function of the estimator is to model the input-output relationships of the
system. To accomplish this objective, determination of appropriate input-output
characteristics and model structure must be made. These design decisions must be tempered
by consideration for the model application--a neural network adaptive controller.

a. Input-Output Selection

In estimation experiments, the selection of what to measure is a complex issue.
In this case the state and input variables are the measured outputs and input, however the
scaling of these measurements is an important factor which will be described in the
discussion of model structure. Once the variables to be used are selected, the proper input
characteristics for the experiment must be determined. Three factors which must be
considered in input selection are data record length, the input spectrum, and the sampling
time. [Ref. 6:p. 340]

The choice of input spectrum is one of the most important in estimation.
Intuitively, the input spectrum must be selected such that all modes of the system are excited.
This is known as the concept of persistent excitation. A related concept, parameter
sensitivity is the sensitivity of the parameters to excitation at different frequencies. This is
a function of not only the system to be modelled but the model structure chosen as well.
There are disadvantages to overexcitation, however. The input spectrum must not be selected

in such a manner that the output signal strength is exceeded by any expected non-modelled

39

noise. This signal to noise ratio concept is related to the idea of the information content of
an input. [Ref. 6:pp. 358-378]

The effects of these factors in input spectrum selection may be seen graphically
in Figure 12. Persistency of excitation indicates that at a minimum input energy must be
placed near the low frequency, or phugoid modes, and the high frequency, or short period
modes. Due to sensitivity of parameters, energy must also be expended in the range of
frequencies where high frequency attenuation occurs. The justification for this may be best
understood by recalling that the best indicator of a system’s order is its high frequency roll-
off. The concept of a truly deterministic system is impossible to obtain in real terms. In
this, as in all, investigation of deterministic systems there is actually some noise present. This
noise is due primarily to simulation errors and truncation in the Neuralworks Professional II
program (Neuralworks only allows access to values with precision out to six decimal places.)
Both of these noise factors are predominantly in the high frequencies where it was just
indicated that there must be some excitation. The presence of modelling errors, known as
aliasing, may be seen by comparing the high frequency (three to five hertz) regions in
Figure 12, the system discrete simulation frequency response, with Figure 11, the true
system frequency response. Note that there are some high frequency dynamics present in the
discrete frequency response which are not present in the continuous, or true, frequency
response. The concept of information content thus is in conflict with the concept of
persistent excitation. The problem of input spectrum is to select the input which is the best
compromise between the requirements of persistent excitation and information content. The
complex issues in input selection are studied in this investigation through the use of a number
of different user selectable inputs in the USERIO program. [Ref. 6:pp. 358-378]

Another factor in input-output selection is determination of the sampling time.
Sampling a system contaminates its dvnamics. Information about frequencies above the
Nyquist frequency (one half of the sampling rate) is totally lost. At the same time, energy
in frequencies above the Nyquist frequency is folded over onto lower frequencies. This

superpositi~n is the aliasing described in the previous paragraph. The desire is to minimize

40

the effects of aliasing. This can be done accomplished by filtering out the aliasing and
including the filter structure in the estimator. Since the structure of the filter would be
known it could easily be included in the neural network structure proposed in this thesis
This method adds undesired complexity to the problem and was not investigated. An
alternative solution is to sample fast enough to eliminate the effects of aliasing. This,
however, has its own disadvantages. [Ref. 6:pp. 378-386)

Sampling too fast may cause loss of information on low frequency dynamics while
sampling too slow may cause loss of information on high frequency dynamics. The problems
with sampling rates result from poor numerical conditioning, aliasing, and the distribution
of energy in the input spectrum. Figure 13 shows the pole-zero plots which result from

sampling the system of A-4 longitudinal motion at two different sampling rates. With a

0.4, . Pole ?.ero Plots for A-4 Longitudinal Motion Simulation
o
0.2+ N
] 1
| i
O[a o °© o of
i
-0zl |

ol _
-4 -3.5 -3 -2.5 -2 ~1.5 -1 -0.5 0 0.5 1
o - Zeros M 0.4/Sea Level Ts=0.1 Seconds X = Poles

0.5~ r a4 T T - T — T
) I
o !
l (-3 ®C o o o © -
|
| |
-0.5 : — - ‘
-0.6 ~0.4 ~-0.2 0 0.2 0.4 0.6 0.8 1 1.2

o - Zeros M 0.4/Sea Level Ts=5.0 Seconds x - Poles

Figure 13: The Effect of Sampling Rate on Poles and Zeros

sampling time of 0.1 seconds, the low frequency poles and zeros congregate around the point

z = 1.0, the ideal integrator With a sampling time of 5.0 seconds, the high frequency poles

41

cluster around the point z=0.0, a direct input. Sampling too fast may cause ill-conditioning
in the low frequencies while sampling too slow may cause ill-conditioning in the high
frequencies. Another problem with sampling too slow results from the aliasing discussed in
the previous paragraph, while another problem which is a consequence of sampling too fast
is the energy distribution problem demonstrated in Figure 14 where the input sequence and
spectrum for a random binary (RB) input are shown. By using a log log plot, it is easy to see
that each succeeding decade of the input spectrum contains ten times more data points
implying ten times the excitation and thus ten times the spectral energy. The higher
frequency modes therefore receive more excitation. The consequences of fast and slow
sampling rates indicate that estimators will only be effective over a limited range of

frequencies. An estimator can successfully cover on the order of two to three decades of

Sample Bagoom BinRCy 100Ul Sequence
—r t - ™

| qf T T e
7l A
i)
1 Wil
. M L R HL{ L H L i
1S — = — L —
10’ e S8MG @ Eangor B.npry Seguence Spectra’ (goteat
ot [‘ ‘ -
0T =
; 100 & 4
107 [-

Frequencty {mMertrl

Figure 14: Effect of Sampling Rate on Excitation

frequencies. A rule of thumb for the selection of sampling time is approximately one-tenth
of the highest natural time constant. For this investigation, a sampling times of 0.1 seconds
was used. The low frequency and high frequency dynamics of the A-4 longitudinal motion
span a range of about two and one half decades and thus may exceed the limitations of the
estimation process. [Ref. 6:pp. 378-386]

The choice of data record length is also important. Although the simulation used
in the USERIO program could generate data indefinitely, modeling errors result from the
recursive nature of the simulation and the presence of non-minimum phase zeros. Errors in
the simulation propagate at a rate proportional to the power of the absolute value of the
system zeros. Since many of the zeros are near to or outside of the unit circle (see Table III)
errors in the simulation will grow unbounded. The simulation must thus be reset at some
time to keep these errors from becoming significant. At the same time, resetting the
simulation adds noise to the data by truncating the sequence. There is also a need to consider
the number of periods of the phugoid modes presented to the estimator. The chosen
compromise was to use a data record length of 9000 points which would give between 125
to 150 presentations of the phugoid using a sampling time of 0.1 seconds. This is
implemented in the USERIO program by resetting the simulation every 9000 cycles. [Ref. 6:p.
382]

Input-output selection is a complex task. Consideration 6f persistency of
excitation, sensitivity of parameters, and information content is essential in selecting the
input spectrum. fhe range of significant frequencies in the system is important in choosing
a sampling rate. Finally, the length of the data record must be commensurate with the size
of the model and character of the system being modelled. The USERIO program used for
this investigation incorporates a number of input selections to test the effects of some of

these choices, while minor modifications to the program may be used to test others.

b. Model Selection

Model selection is also critical to the success of the estimation process. This
should not be viewed as the selection of a single model, but instead the selection of a class
of models. The estimation process is the determination of which member of this class best
fits the data provided. In this way, the model selection represents some artificial constraint
in which the system is to be represented. The major factors in model selection include model
structure, parameterization, and the estimation algorithm. The model structure represents
the architecture of the model while the parameterization determines the dependencies of its
elements and the estimation algorithm determines the manner in which the dependencies are
changed. Model selection issues are important to consider in the design of a neural network
adaptive controller.

Selecting the model structure involves choosing a prototype for the system. This
may include determining whether the model is to be linear or non-linear, the order of the
system, the number of elements in the input and output vectors, even the number of models
used to represent the system. For the adaptive controller, the model structure also includes
the number of elements used for the control law. For this investigation, the model structure
was similar to the sequential structure developed in Chapter IV. Figure 15 gives an example
of the structure used parameterized as four different transfer functions. Since the
longitudinal motion of the A-4 is a fourth order system with four outputs, the required
number of regressors is 20, four for each output and four for the single input. The 19
elements in the bottom layer represent past measurements of the outputs and inputs. From
left to right, the first three input elements are §(t-2), §(t-3), and §(t-4) where the element
label indicates the delay for that particular unit. The next four elements represent delayed
values, or past measurements, of u(t), followed by four for a(t), four for g(t), and finally
four for ©(t). This layer is duplicated in the second layer with the addition of r(t-1), the
reference input, to provide the state variable plus reference input for the control law
synthesis. The third layer is a single element, a weighted sum of the reference input and

states, the control input, §(t-1). The 20 elements in the regression vector come from the 19

44

Neural Network Adaptive Control StructuresLongitudinal Motion of the A4

AREFCt)D QREFCtD TREFCtD

THETAR (L)

-t -2 |3 |-4|-1|-2 -3 |4

NeuralWorks Professional Il (tm) serial number NZFB50-20205
Copyright (c) 1987, 1988 by Neurallare, Inc. All Rights Reserved.

Figure 15: Neural Network Adaptive Controller Structure for A-4 Longitudinal Motion

units in the first layer and the single unit in the third layer, which is itself a weighted sum
of the activations of the elements in the second layer. This is a slightly different, though
equivalent, structure for the middle layers than the one developed in Chapter IV. The second
layer from the top is the output layer. The top layer is the reference layer. The effects of
non-linear models are incorporated by introducing hidden layers with non-linear activation
functions between the third layer, the control input layer, and the fourth layer, the output
layer, in Figure 15. Additional elements may also be added to the input vector to allow for
models of higher order or different inputs as in Figure 16. Note the addition of mach
number and altitude in the last eight elements in the bottom layer. This neural network
adaptive control structure allows a natural progression from linear to nonlinear models.
Determining the manner in which these elements of the model structure are connected is

known as parameterization. [Ref. 6:pp. 408-431]

45

Non—-1linear NN Adaptive Control Structure for Multiple Conditions

UREF |RREF |QREF |TREF

Bias 12 13 14 15 16 17 18 19 ll il lll 11 {1 il
NeuralWorks Professional Il (tm) serial number NZFBS50-20205
Copyright (c) 1987, 1988 by NeuralWare, Inc. All Rights Reserved.

Figure 16: Non-linear Neural Network Adaptive Controller Structure for A-4
Longitudinal Motion/Multiple Conditions

Parameterization concerns selecting the dependencies between various elements
in the estimator. From equation (5.7), it is known that it requires a minimum of 20
parameters to fully describe the system. From Figure 15 it can be seen that there are 80
possible connections in the linear structure which can be made in any number of
combinations. The neural network adaptive control structure in Figure 15 is parameterized
as four separate linear transfer functions. This requires 32 connections. Each output element
has eight connections. Four of these connect the §(t) terms to the output element and
represent the b; parameters from equations (5.6) and (5.7). The other four connections attach
the output to its own past values and represent the a, parameters in (A(q) - 1) from equations
(5.6) and (5.7). More elements may be added to the regressor to change the order of the
model. The selection from all possible parameterizations is a complex task which will be

discussed in the results. [Ref. 6:pp. 408-431]

46

The complexity of the gain used in the estimation algorithm has a great effect
on convergence and stability of the estimator. The gain term in the general form of the least
squares estimator

B(t+1) = 6(t) + M(t) ¢(t) e(t) (5.8)
may take many forms, one of the most complex of which comes from the RLS estimation
method developed in Chapter I1I. The gain used in the Backpropagation neural network is
much simpler. It is related to an estimation algorithm known as the least mean square (LMS)
estimation method, whose gain law is

[+

M= (5.9)

KX

where a is some constant and | @ || is some norm of the entire set of regression vectors. The
stability limits for a result from the fact that the linear estimation process is itself a first
order dynamic system. The value of a in this system represents the eigenvalue of the system
whose stability limits are [Ref. 14]

0<acx<l Stable, overdamped (5.10)

l <a<2 Stable, underdamped

2<a Unstable
Knowledge of these limits on & gives an exact means to determine the value for the learning
rate in a linear Backpropagation neural network and a general guideline for determination
of the value for the learning rate in a nonlinear Backpropagation neural network. An analysis
of the features provided by ne gain term in the RLS method will point out some other ways
in which the Backpropagation estimation gain may be improved. The RLS gain term is
expressed as
P(t) (5.11)
I+ ¢T(1) P(t) é(1)

Of no small significance is the fact that the gain is a function of time. In both the numerator

L(t) =

and denominator, the term P(t) is the error covariance of ©(t). It provides an error

distribution function. In the denominator, the ¢T(t) P(t) ¢(t) term provides some scaling

47

function. Error assignment in distributed systems is a complex task beyond the scope of this
investigation. The gain can, however, be made more robust by making it a function of time
and prescaling the data. A crude form of adaptive gain law is provided through the use of
gain schedules, known in the Neuralworks Professional II software as learning rate schedules.
The use of learning rate schedules is at best a trial and error effort. They were not used in
this investigation. The data may also be scaled to make the estimator equally sensitive to
outputs of different orders of magnitude. The A-4 longitudinal modes were scaled using the
C matrix as mentioned above to obtain inputs and outputs bounded by the value one. This
was done empirically by simulating the system response to various inputs and scaling by the
maximum deflections, at best an inexact method. The concept of scaling is also important
for nonlinear activation functions whose values are bounded by set regions. Using this type
of scaling, the gain for an element using the stability limits for the LMS method can be
simply expressed as
M= 1/N (5.12)
where N is the number of input connections to that particular element. The neural network
is very sensitive to this gain. A value for the gain which is too high will cause the estimation
network to go unstable. A value which is too low will require very long convergence times.
The estimator gain used in the Backpropagation neural network leaves much to be desired.
3. Validation Issues
Once a model is established or a control law is developed, some means must be
used to validate the result. In this investigation, the true system is fully specified, so it is
easy to compare the estimated models to the true model. The neural network estimator or
controller performance can be evaluated dynamically by examining the errors between the
network output and the desired output as training progresses. Statically, the performance
may be evaluated in the time domain by looking at the error produced using inputs other
than the one on which the network was trained. Frequency domain characteristics for black

box models may be evaluated using spectral estimation techniques. For linear systems, where

48

the parameters have some physical significance, the parameters may be used for evaluation.
The coefficients of true and estimated models may be compared directly, frequency response
plots may be generated, and the poles and zeros may be evaluated. Many of these methods

will be used to evaluate the neural network adaptive controllers presented in the next chapter.

D. SUMMARY OF EXPERIMENTAL SETUP

In this chapter, the experimental setup for this investigation has been characterized.
The hardware and software to be used were described. The system to be modelled and
controlled has been introduced. Finally, some considerations in the design of the experiment
were developed. With due consideration of all of the items discussed in this and the previous
chapters, it is now possible to conduct experiments in the use of neural networks in adaptive

control.

49

V1. RESULTS AND DISCUSSION

The concepts developed in the previous chapters will be combined in this chapter to
demonstrate the effectiveness of the application of neural networks in adaptive control.
Initially, the stability characteristics of a linear neural network adaptive control structure will
be investigated. The estimation qualities of linear and nonlinear neural network adaptive
control structures will then be examined. Finally, a few examples of the operation of a
neural network adaptive controller will be demonstrated. Through the use of linear and
nonlinear networks, the similarities between neural networks and current adaptive control
techniques will be shown as well as some possible extensions of adaptive control provided by

neural networks.

A. NEURAL NETWORK STABILITY CHARACTERISTICS

The neural network adaptive control structure parameterized as four different transfer
functions as shown in Figure 15 was used to demonstrate network static and dynamic
stability. This parameterization was chosen because the weights in the network can be
directly compared to the coefficients used in the simulation. The stability demonstration was
conducted by testing a network whose weights were artificially set to be exactly those of the
true system. In this case, the true system was represented by the flight condition of mach
number 0.4 and an altitude of Sea Level (Condition 1 from Table I). First, the network was
trained for one data set, or 9000 cycles (900 seconds), using the random binary signal. Plots
of the percent deviation of each of the weights, or coefficients, from the true coefficients
for each output as a function of training time is shown in Figure 17 through Figure 20. Each
graph contains eight plots, one for each of the a, and b, coefficients associated with each
output. The maximum deviation of the parameters associated with u(t) is on the order of two
percent (Figure 17) with one perturbation between 700 and 800 seconds, while the maximum
deviation for parameters associated with o(t) is on the order of 0.001 percent (Figure 18) with

perturbations around 400 seconds, 800 seconds. and 900 seconds. The maximum deviation

50

for parameters associated with q(t) is on the order of 6 x 10” percent with no perturbations
(Figure 19), while the maximum deviation of the parameters associated with 6(t) is on the
order of 6 x 1073 (Figure 17), also with no perturbations. At this point the discussion of the
relative size of the parameters in Chapter 5, Section B. becomes apparent. Each of these
percentages represents real deviations on the order of 107, the precision of the Neuralworks
Professional II program. Since the b, parameters associated with u(t) are so small, they are
very sensitive to changes in the seventh decimal place, followed in sensitivity by 6(t), a(t),
and finally q(t). Note that the weights and the corresponding parameters remain very stable,
with few perturbations of small magnitude. .

Next, the weights were each perturbed by some random amount between -0.01 and 0.01
and the network was trained for 18,000 cycles (1800 seconds). This was done to determine
if the parameters would return to the original values. The percent deviation of each of the
parameters as a function of training time for each output are given in Figure 21 through
Figure 24. Again, the sensitivity of the parameters associated with u(t) is seen in the 500
percent deviation caused by a perturbation on the order of 0.01 in Figure 21. The parameters
for u(t) appear to settle to a point near zero percent deviation. Note the underdamped
convergence of the parameters for u(t). For o(t) (Figure 22), the parameters converge to
some value within the first 200 seconds, though one parameter exhibits a deviation of
approximately one percent. The same convergence rate is seen in Figure 23 for the
parameters associated with g(t) with much smaller percentage deviations. The parameters for
©(t) exhibit the same underdamped convergence seen in u(t) with percentage deviations of
the same order as the parameters associated with q(t). All of the parameters show a strong
tendency to return to the proper value. Deviations are again related to the relative size of
the parameters for each output. The slow convergence seen in the parameters for u(t) and
O(t) is most certainly related to the fact that u(t) and ©(1) are slowly changing, or low
frequency, modes. These two simple trials indicate that a network containing weights related
to the true system will be relatively stable in the presence of small plant disturbances. At the
same time, problems related to the conditioning of a model parameterized as four separate

transfer functions becomes apparent.

Staps ity of Parameters for u(t)
2 A -+ - r v T —
1sF 4
\Bg s
<
o
-
o
>
4
Eoaat]
-
c
L4
v
-
€
[-Y
o
-0 s h
-1 . 1 A i 1 — A —i
1] 100 200 Joo 400 S00 600 70¢ ego %00
Time - Seconos {(¥s = 0 1 sec)
. B vq e
Figure 17: Network Static Stability for u(t)
x 107 St8C. ity af PErameters for 21ppa(1l)
27 — — T T T T |
’_-\ ;“-""'"‘-v\ V_
! i v
i ‘i
' v
. t u
________________________________) g | '
P SEttmttpatetattntetumputubepepgtup gt pinpt ettt =gt g g e Gm g et utnpapunp -
.zr |
c
o
s
>
4
o a4 -
¢
[}
v
<
. d
a
-8 el
.8 1
Y " " .
o] 10¢ 20C 36¢C LReld soC 600 100 BoC s00
Tome SeCLTIs 16 = 0 1 Bec)

Figure 18: Network Static Stability for o(t)

x 1072 Stapility of Parameters for Q(t)
[T T S T ™ T T
5 -
- ~
<
o
4 Ik -
>
®
o
-
e
8 2 F -
[
®
[-Y
4 ~
c'r q
| ;
T T e T T T TR
1‘ : -
c 15 H 30 ag L oo 60C 100 8c0 80¢C
Tame - $Sel¢nas (e = 0 1 gec)
. . T
Figure 19: Network Static Stability for q(t)
x 10°? Stet. 1ty o¢ @mramevrers for theta(t]
[v T T - T T |
T
1
s - -
‘ |
2 |
a = 4
! |
1
i)
3= -
I4 b
. i
e ! !
s Lk 4
> .
& |
c I
I
RN]
v
N
4
e i
o
I
L .
1 !
i
—— :
L e 0
!
|
. :
-3
c 152 FI%e 3L az: 356 650 700 ese 80C
T ome Secoras 776 x 0 * sec)

Figure 20: Network Static Stability for 6(t)

53

Perturbed Stab:iity of Parameters for u(t)
6060 — ~— —r —— T -r
400 7
200 l v ‘ 7
3 : ‘ dl “;
s ! A ll ‘ TR ‘ ll ﬂ i)
s 0 "”u\.l :l!tﬁul!’l!‘ub}l'l’\a(l !.'l.. ¥ il IA.}.,&IA.ML.A; M _..A‘,\H AVAS ..A::_;_\‘-.» o 9« 5 2 e
i M A A AR A N M
H
a
-200 ‘ | | | I 1
<00 7
.BDDG 200 400 500 goo 1000 1200 1400 1600 1800
Time - Seconas (Ts = 0 1 sec)
Figure 21: Network Dynamic Stability for u(t)
Perrurped Stab.i«ty of Parameters for sipha(i)
2s — — : v :
2 4
T 5k J
H A 4
{
& ospl 1
s o ol
Lk
o s 4
W ~
' 50 200 400 60{,— 800 1000 1200 1400 1600 1800
Time - Seconcs {(¥s = G ' se¢)

Figure 22: Network Dynamic Stability for aft)

54

Perturbeg Stability of Parameters for aq(t)
0s T T v T T T
0.4 A
[N -
<
]
-
«
>
v
e D21 ~
-
c
v
v
.
v
a
c.1f B
S o e e e e e e e e e e e e e e e == L
0.1 T T e v " T T T
o 20¢ 4093 60C 400 1000 1200 1400 1600 1800
Time - Seconas (Ts = @ 1 sec)
. . “y e
Figure 23: Network Dynamic Stability for q(t)
Pertuyrped Sitan ity of Parameters for theta(t}
2 — v T .
{
|
!
1 s Py 1
H
] 0
|
|
T H .
!
1
< !
2] ﬁl
- 4
s oSt 4
M M
v
o
< = y jv\ -t:‘~ _____ Bty S et e N PR T
\l: 0 O T AL e i
Iy
., P
a
-0 s I -
I
o
|
i
\j
oL PR n P " —_ —
[200 400 600 :19 1000 1200 1400 1600 180¢C
Ti.me - Seconds (T8 = 0 1 sel)

Figure 24: Network Dynamic Stability for ©(t)

55

B. THE NEURAL NETWORK ADAPTIVE CONTROLLER IN ESTIMATION

The performance of the neural network adaptive control structure in estimation of the
longitudinal motion of the A-4 will be examined in the following paragraphs. Developing
a good model of the system to be controlled is important in developing a good control law.
The estimation trials were accomplished using the neural network adaptive control structure
and skipping the control law synthesis phase of operation for each sample. The performance
of two linear networks with different inputs and parameterizations will first be demonstrated
in developing a model for the linear system represented by Flight Condition 1 (see Table I.)
/ aonlinear network will be used to establish a model for the same linear system. The
concept of a nonlinear neural network will then be extended to the modelling of multiple
flight conditions. The similarities between the performance of linear networks and linear
least squares estimators will be shown and extensions provided by nonlinear networks will

be demonstrated.

1. Linear Neural Network Parameterized as Four Transfer Functions

Initial estimation efforts involved the use of linear neural networks establishing
a model for the condition M 0.4/Sea Level. The first network to be evaluated was trained
using the random binary (RB) input and was parameterized as four transfer functions as
shown in Figure 15 and discussed in the previous section of this chapter and Chapter V,
Section C. This parameterization based on a priori knowledge gives the network 32
parameters to describe the system. It was hoped that the weights of the trained network
model would exactly duplicate the parameters used in the simulation. The neural network
was trained for 5,000 (500 seconds), 50,000 (5,000 seconds), 500,000 (50,000 seconds), and
5,000,000 (500,000 seconds) cycles. In spite of the lengthy training times, the network never
seemed to learn the proper coefficients. The weights for u(t) and a(t), which are
representative of the phugoid and short period modes, are compared with the true system
parameters in Table IV. The b, and a, terms are defined exactly as in equation (5.7). The

network determined b, ‘erms for both u(t) and aft) appear to be near the correct magnitude

56

although the signs are incorrect in many cases. No discernible similarities may be seen
between the network determined and true values for the a, terms. What is interesting to note
is that the neural network determined coefficients for a, and b, are much closer in relative
magnitude than those for the true system. The neural network appears to have developed a
better balanced or better numerically conditioned representation for the system.

Table IV: Network Weights at 5,000 and 5,000,000 Cycles
|

Terms Sk Model SM Model True Model
b, -1.2340e-03 1.6200e-04 2.7131e-05

b,» -7.4700e-04 1.9200e-04 7.7248e-05

b3 -3.4000e-04 2.5200e-04 -7.0558e-05
b4 -8.6500e-04 2.2600e-04 -2.2579e-05
a, -7.5005e-02 -1.0065e+00 -3.6949e+00
a,, ~-5.9103e-02 -4.8096e-01 5.1802e+00
a,; -4.3016e-02 1.5285e-02 -3.2755e+00
a4 -2.6879¢-02 4.7618e-01 7.9021e-01

b, -3.4585e-02 -3.4585e-02 -3.4610e-02
b.» -5.9416e-02 -5.9223e-02 4.5022e-02
b3 -4.2327e-02 -4.2003e-02 1.3715e-02
b4 -1.2359e-02 -1.223]e-02 -2.4124e-02
a4 -6.7710e-01 -6.8273e-01 -3.6949¢+00
. -4.2595e-01 -4.2207e-01 5.1802e+00
: T -6.1324e-02 -5.6638e-02 -3.2755e+00
a4 4.0465e-01 4.0036e-01 7.9021e-01

The quality of this balanced representation may be better evaluated by conducting
time and frequency domain analyvses of these models to determine how closely they come to
the true system. The swept square wave is a good input to test the time domain response of
a model. Figure 25 gives the time and frequency domain characteristics of the swept square
wave. The swept square wave is an input signal which excites all of the fr-juencies of
interest. At the same time, the time domain response is easy to visualize since each segment
is a unit step input. The plant response of the model trained for 5,000 cycles is shown in
Figure 26. The output u(t) exhibits the expected low frequeicy response, while a(t) and q(t)

exhibit high frequency responses, and O(t) exhibits a mix of low and high frequency

responses. These are the expected shapes for the plant response. The RMS prediction error
is given in Figure 27. This shows how close the predicted output is to the true output. The
network appears to have developed a good model for a(t) and g(t), with RMS errors on the
order of 0.1 or ten percent of the maximum output value of one. The network has not,
however, learned u(t) and ©(t) very well, with RMS errors on the order of 0.7 or almost 70
percent of the maximum output vaiue of one.

Because this is a linear network, the internal structure, the weights, have physical
significance. These parameters can be used to evaluate the frequency domain characteristics
of the system by generating discrete Bode frequency response plots. The frequency response
plots for the longitudinal modes of the A-4 estimated using this parameterization of a linear
neural network estimator with a Random Binary Input are given in Figure 28 through
Figure 31. In Figure 28, the frequency response for u(t) may be seen. As the training
progressed, the network first developed a good high frequency model for u(t), then developed
the proper shape for the frequency response, but by 5,000,000 cycles had still not learned the
entire response correctly. The presence of unmodelled noise dynamics in the range of
frequencies between three and five Hertz is significant. The frequency response for oft) in Figure 29
shows that the network develops a near exact model almost immediately. However this model
does not change much with further training and the network is unable to model the low
frequency dipole even after 5,000,000 cycles. The frequency response for q(t) in Figure 30
is similar to that for at). In Figure 31, the frequency response for ©(t) is similar to that for
u(t). Almost immediately the high frequency response (above 0.5 Hertz) is accurately
modelled. At 5,000,000 cycles, this accurate modelling has only expanded down to about 0.1
Hertz. Again, there is some undesirable wigh frequency noise modelling present. As
expected from the discussion of input selection in Chapter V, the frequency response for all
outputs is good over a limited range of frequencies, even though the random binary input is
known to be persistently exciting. At the same time, some outputs show the modelling of
undesirable noise dynamics in the very high frequencies related to the concept of information

content. The low frequency dynamics have apparently been lost and replaced by some high

58

frequency noise dynamics. The neural network is more sensitive to high frequency noise
dynamics excited by the persistently exciting random binary input than to the low frequency
system dynamics. The concepts of persistency of excitation, information content, and the
effects of sampling time can all be seen in the frequency response results for this network
parameterization. The network (see Table IV) appears to be making the best balanced
realization it can with the available parameters. From these results it may be seen that neural
network estimators are governed by some of the same precepts that govern traditional
estimation.

Various other trials were conducted using a network parameterized as four
transfer functions with little improvement on the results. Inputs with excitation in different
frequencies, slightly overparameterized systems, and different sampling times were used to
attempt to obtain better results. The network parameterized in this manner could not learn

both the high and low frequency dynamics at the same time.

5 1 1 L
<';——r————r—5immﬂh—ﬁ—“lhrm“3—5£wiﬁ———r——r——.
i
15 4
' aEalale m~OCoonn ann]
O nanannaanEsannannnnmm
R Ly ,:[i}i[.l‘fH' ! ’]
< (PLlbiiry i SEEEEERRREE 0
3 i | | . | |
2 or l[’, AR ' I E
< L AR AR |
Q.,:t-!ﬁ“\’ TR R EREREE !'l;}l‘ H -
" SRR IR ; RN ERRRRENE | |
1‘.__,‘_)_/«_._‘ VU VL U G S AU VIV I) -
v o- J
; o 1 A j
G <L . L e &5l i0cC 35C 40C 4sC
e L 1 St U Seconas
13 i
|
w0 b 1
1t F |
-]
ERPPEI S d
- T I
< . i
2 -0 T Bl
3 ! .
w F B
' |
150 F "‘
‘ s e et =)
“c
C ! [c Ak o°
Fres,uer Ty Trmer(’

Figure 25. Input Characteristics

59

Lreaiciion for ALPHACLY

Tome [SeconaE

03 S
0.25 . 4
0.2 — B
~
~ <
o0 1S ’}Mp - < 4
5 e :
<
01 B B
0.05 h W
o o o s . s 2 _“—
0 100 200 300 40C s0aQ 1] 100 200 3Joo 400 500
Time (Seconas) Time (Seconas)
Pregicrion for GIt3 preqgictLian tor IHETALL]
15 T . — T Al T Y Y T
1L =
0.5 l 4
~
-
~) Z
- .| <
L o , z 1
151 w
I
-
-0 s I T +
4 4
—- " .
-1 s -1
] 100 204 300 400 S00 g 100 200 300 400 s00
Time (Secongs; Time (Seconas)
.
Figure 26: Plant Response
o 7 Prgaigtign Error for urty s orggictign fregr Yor ALPHACLS
‘ 1 [
2 s'f -1 . !
‘ ' oe - fA —*
i : N
1 1
G5 ”h : ,L 1]
z ! :
oo ab! | . 2 006 -’
- - i) N :
oo o N”M'\ |
oo u - v
2 2 04
NN : R) 1
oc.2h ! t - } i h J'
+]
‘ 1‘ b h ' ‘]
[i i it - !
L | VLR |
- I ul h PR . P P | Y . N J
G 1CC 2cn 30¢ ag: <ot 4 100 200 ice 43c sCC
T.me (Seconagc Tine 7 Sezonas’
o 1ec PreqicliQn Ercir for Gl } . o 3 :
(; ; !
0 12H i |
}; ' P ﬁ
i . i
3 ; I | 5 3 ! ~
S 0ot | B N |
L I i L i
w w ,
v —
¢ 0 06 L | ! ‘ 2 2 I 4
a [| J ! a | |
0 04 l ! - \ Ll
ol F | : i ‘ 4
0 o2 | ' — i
[|F w ; | |
P L ; ! i il
¢ P G o 1 Ll .
[0L 2. E1aK 4 < 108 20¢ 10 4t 560

Figure

27: Prediction Error

60

System ANG Network Moogel! Frequency Response for u(t)

10' T T T T T T T YY T Y LIND M S A M B 4 T T T T T
10° [b
1w [b
Tl e 1
1)
2
2
:
o
1
107 7
o 4
SH Cyc1es
00k cvcles
108 S0k cycres]
True Systenm
rors s D i Y
10°? et et et 10"
M 0 4/5em Leve! Frequency (HMertz) Ts=0.1% Seconds
Figure 28: Frequency Response for u(t) for Various Amounts of Training
System AnG Network Mode! Frequency Response for Alpna(t)

pu S EWEY

I\\
)
)
I
i
i
]
[
I
|
I
I
t
k
Ll

1

i}

Maga(tuae
8
70 SENREES Sants St 00 S 10 8 8 SEEEEnEED Sl S N U0 20 B 8 & Sunnt Snts s g 0 8 0 & It Sy S b ol G m R 8

=

=

3

4

4

~

~

4

1! 3

3

SM Cycres 3

S00r cy ec j

LUx Cycies i

True System -

i

i

» e 14t - 44 1 1 U T W W 1 1 s 1 A‘

10°

1! 1wl AL 10° 1c’

M 0 4/S5en Leve. Frequency (Hert2) Ts=C 1 Seconds

Figure 29: Frequency Response for aft) for Various Amounts of Training

61

wagnituge

System 8NO Nelworrk Moge:! Frequency Response for q(t)

10°' r LENLA N 20 T T T T YT T T T A T T T
- 3
- -
F 4
r B
I 1
¢ -
10° [=
o 3
- -
L P
L N\ -
- o \\\\ —
SRty St Sa kit \\\\\\\~
B 4
10 F]
T 1
- -4
- / J
- SN Cyc s -
L s00kx cles -
50k Cchcres

L True Systen 4

102 Lo L PN 4 atag PR Y
167’ 1072 AL 10° 1’

M C 4/5es Leve! Frequency (nertz) Te=(1 Seconas

Figure 30: Frequency Response for q(t) for Various Amounts of Training

Magnituae

SyStem ang Networr Moge: Frequency Response for Theta(t)

a
o

-
a
°

-
o

o

T T T T T T T YT — —T T— T T

T T T
7

3N cycles
SO0k rycies
$50c cycres
Yrue Systen

L
L

21 FEY : PR P S S S S U P

-
e
U R S 2 U RO N 0 U % S R A 0 0 0 At S Rt A0 0 £ 1 SRS S TTT

107"

A R S S T B W R TT R T W WY TV TV I G A W R FY 1T S S ST W S Y s

o

o o ! agt

M 0 4r5e8 _eve: Freguency (Hert2y Te=0 1 Seconas

Figure 31:. Frequency Response for ©(t) for Various Amounts of Training

62

2. Fully Connected Linear Neural Network

The second linear neural network model to be demonstrated is fully connected,
i.e. it has all of the input elements connected to each of the output elements. The belief was
that the network was not being given enough parameters to describe the system, including
any noise dynamics. This highly overparameterized neural network has a parameterization
similar to that suggested by [Ref. 6:pp. 115-126] for multivariable systems. It is interesting
to note that the fully connected neural network, which is intuitively a more natural
parameterization, is similar to that recommended for multivariable systems. The 32
parameters used in the previous example are replaced by 80 parameters. The input was also
slightly modified. The random binary (RB) input was bandlimited by allowing it to change
every two samples instead of every sample. The resulting pseudo random binary (PRB) input

is shown in Figure 32. The severe drop in spectral energy above four Hertz was intended to

15 Sarp e Pseugy BANQOM Bonpry Input Sequence .
1 } — "]r‘ﬁ m m
AT Nt T nn nmn |
| Il 1 | by plhidt: 1o P i {
'?l:(“‘ : o K [1t ! ! _l
05) 5" } ‘i !:\“- it li.‘ ’| I
i Pl |]; i 1 it [[:
R I 11 AP H T R R Rai |
R T A A T | I
L AN I i '
osE I e i LI
iR L i L i
b Uun L SN KON NN P B L Ul u
; —J
L ose s ; .
C 2 4 € & 10 12 14 16 16 20
Time (Seconds) Ts=0 1 Secondas
Y E rrrrRBTO e PRgecs Reqgor Einec, jeguence Specfray foptent ——rrr
E i
.
|
10° LU b oy
e A T !
. E RN YRR “L\‘P‘l j
< r_ | 1
ok
z 1ot E
g E 3
3 ;‘_ q
10"E %
-
1cv¢‘ ——a R S — VWt A4 A4 ad
et ’ v 1c 10° 10’
Freguency (HMe~1Z)

Figure 32: Pseudo Random Binary Input Sequence and Spectral Content

63

limit the excitation of the high frequency noise. Using a network parameterized in this
fashion, the dynamic estimation error for all outputs went to zero in less than 5000 cycles
(500 seconds). The error for each output resulting from testing this model with the swept
square wave in Figure 25 was smaller than the precision of the Neuralworks program as
shown in Figure 33. Comparison of the specific parameters in this model with those for the
true system is difficult. This network appears to have developed a near exact model for the
input-output relationship of the true system. Two factors allow this network to perform
far better than the network parameterized as four transfer functions. The highly
overparameterized nature of this network allows parameters to be used to model noise
dynamics and provide a better balanced representation of the system. At the same time, the
fully connected structure allows crosstalk between outputs, providing a means for outputs to
develop dependencies on past values of other outputs. Thus, through the use of better
parameterization and a bandlimited input, the linear neural network performed very well at
the estimation of the longitudinal motion of the A-4 aircraft.

A linear neural network can successfully produce a near exact model for the A-
4 longitudinal modes. However, neural network estimators are limited by the same concepts
of persistent excitation, information content, and sampling time as least squares estimators
introduced in Chapter III. From the first example, it appears that the neural network
attempts to make the best balanced realization of the model possible with the given number
of parameters. From the second example, the use of a fully connected neural network
estimator proved to be much more successful. This result lends some credence to the use of
fully connected neural networks and demonstrates the ease with which neural network
parameterizations can be changed. By demunstrating two examples of a linear neural network
in parameter estimation, the natural manner in which estimation problems can be represented
in neural network structures has been shown, as well as the similar effects of concepts such
as persistency of excitation, information content, parameterization, and sampling time in

neural networks and classical estimators.

64

o o0s Plrnmcllo'n Error tor UCL] o 08 Prtlamlmn 'Errnr xgr ALPHALLY
0 04 -1 0 0a i
L, 002 B L oo02f B
o o
- ~
Iy o
- 0 ~ - 0 s
) w
2 2
-0 02t - -0 0z} g
-0.0471 - 0.04 | -
-0.06 —t d 1 i -D.06 1 1 i n
] 1000 2000 3nogo 4000 5000 [¢] 1000 2000 3000 4000 5000
Time (Seconas’ Time (Seconds)
o 06 P'reu.(LxQ'n Error Aor Q1) o 06 Pre'cncl.on 'irrnr fgr THETACL)
G Qe - 0 04 he
. 0.02fF B L 002 -
© o
. -
Y v
w [-1 w c =
w vi
H 2
a
c.e2 - -0.02 i
-0 oel” B -0 o4 -1
!
| i
-0 06 2 — -6 06 —)
0 100¢C 200¢C 1000 4000 S000 7 1000 200¢C joon 4000 3000
Tiome [Seconcs T.me (Seconds)

Figure 33: Prediction Error for Fully Connected Network

3. Nonlinear Neural Network Estimators

The power of Backpropagation lies not in its ability to model linear systems, but
in its ability to model nonlinear systems. In the following paragraphs, the use of this
capability to model systems will be investigated. The use of a nonlinear network to develop
a model for the linear system represented by Condition 1 will be discussed. This nonlinear
neural network will then be extended to the modelling of the nonlinear system represented
by multiple flight conditions. The estimation process in the neural network adaptive control
structure is made nonlinear by the addition of one or more hidden layers of elements with
nonlinear activation functions inside the network internal system model as discussed in
Chapter V, Section C. Nonlinear neural network estimators pose two problems in addition
to those described in Chapter V for all estimators. First is the selection of the number of
elements in the hidden layer. This is done empirically due to the lack of any other method.

For the single condition network, the same number (20) of elements were used in the hidden

65

layer as the number of elements in the regression vector. For the multiple condition network,
160 elements were used in the hidden layer. The other problem involves determination of
the gain used in equation (2.12). For the linear neural network, this gain could be absorbed
directly in the learning rate, however for nonlinear activation functions, the gain is inside
the function. The most important effect of this gain is on the sensitivity of the activation
function to inputs. For semilinear activation functions, a high gain causes the activation
function to approximate the signum function, taking on values of -1.0 and +1.0 for almost
all values of the input. A very low gain causes the activation function to behave in a more
linear fashion. Again, determination of the activation function gain is done empirically. For
this investigation, values for the gain between 0.5 and 1.0 were used. The use of nonlinear
neural networks in estimation adds considerable capability at the expense of some additional
complexity.
4. Nonlinear Network Modelling Linear System

The first nonlinear neural network estimator was trained using the M 0.4/Sea
Level condition. The layers were fully connected. The input used was the original random
binary input. The order of the dynamic RMS estimation error at 5,000 cycles (500 seconds)
was on the order of 0.05, or five percent of the maximum value, for each output compared
with nearly zero for the fully parameterized linear network described above. By 50,000
cycles (5,000 seconds) the dynamic RMS estimation error was on the order of 0.01 for each
output. Providing ten times the training did not significantly change the amount of error in
the system. This represents better performance than that for the linear neural network
estimator parameterized as four separate transfer functions, but worse than the performance
of the fully connected linear neural network estimator. A frequency domain analysis of this
mode] may help to better understand the performance of this network. It is impossible to
produce typical frequency response plots for nonlinear systenis, however, spectral transfer
functions can be developed from the input-output data. This is done by recording model
input and output sequences. The sequences are then windowed and transformed into the

complex frequency domain using a fast fourier transform. A complex transfer function is

66

developed by dividing the complex output spectrum by the complex input spectrum at each
frequency. The magnitude and phase characteristics of the transfer function may be
approximated by the magnitude and phase of this spectral transfer function. In this case, the
input and output sequences were 9000 cycles long, and the data was broken up into
overlapping 2048 point segments which were windowed using the Hanning method. The
resulting spectra are averaged to smooth out the curves. This is known as Welch’s method.
Further information on this technique is available in [Ref. 11]. The spectral transfer
functions for the 5,000 and 50,000 cycle models are given in Figure 34 through Figure 37.
Figure 34 shows the spectral transfer functions for u(t) where the frequency response is well
modelled across the spectrum with the exception of small errors in the very low frequencies
and considerable noise in the higher frequencies. Note also that increases in training do little
to improve the model. The same is true for the spectral transfer functions for at) shown in
Figure 35. The spectral transfer functions for q(t) in Figure 36 are very close to the true
system frequency response and there is little high frequency noise. The spectral transfer
functions for ©(t) in Figure 37 exhibit the same mode! and noise characteristics as u(t) and
aft). Note that the models are all relatively good, however, the very low and very
frequencies are corrupted. Developing better nonlinear models is a topic which deserves

further study.

5. Multiple Condition Nonlinear Neural Network Estimator

The nonlinear neural network estimator described above may be easily extended
to the modelling of nonlinear systems. This is done by incorporating some measure of the
nonlinearity in the regression vector. For this investigation, the nonlinearity is provided by
including the mach number and altitude in the regression vector as discussed in Chapter V.
Four of the conditions described in Chapter V (Conditions 1, 3, 4, and 5) were used to train
the network which was tested on the fifth (Condition 2). The network was trained for 36,000
cycles (3600 seconds) and 360,000 cvcles (36,000 seconds) with the condition changing every
9000 cycles. The results for conditions on which the network was trained were similar to

those already described in Figure 34 through Figure 37. The same type of results for the

67

System Frequency 3na Nelwork Spectirat Response for u(t)

10‘ aal T YT o rrrrr P LA SR SR SENL R e S BN ¥ T Ad T rrrry T =T T T T
w° I 7
10 [0 B
e 10°7['J
o
3
-
<
o
=
2 -
10°? ﬂ
w0t h
PR S0k cycies
10°% - - . Sk Cycles -
True System
10 IV SN W SHE U I 1 'S i 4 S 1w - T B S I N n N PR S W
10°? w? 20’ 10° 10’
M 0 4/5ed tLeve:! Frequency - Hertz HirQden Layer
. . - v
Figure 34: Spectral Transfer Function for u(t)/Nonlinear Hidden Layer
System fregquency BN> Nerwork Spectrs! Response for Aipna(t)
10" T T T YT T T T T T T T T T T T T
3
3
B
4
10° _4/ o
% ________ 5‘.\ :
° E I
T
3
z . 3
s 10 =
o]
- -
2 +
4
10°? :{
]
P S0x Ccycles -
. - 3% cycies {
— True Systen h
~
i
S U, U
g ? 1g ¢ I 100 "ot
MO 4 Sea (pve foegnen er oty Higoer Layer

Figure 35: Spectral Transfer Function for a(t)/Nonlinear Hidden Layer

68

System Frequency and Netlwork Spectral Response for g(t)

10‘ C T T T Ty T T T T rrrrr T T T T T Trrrry T T ¥ T rrro)
- -
o -
. - B
. s b
10° []
b R
- -4
L3 [B
g - .
-
z -
o
o
E + E
B <
1wt e 3
- 4
- m
L - - SOx cyktres |
R Sk <y,£‘es
L —. True System]
1ot N Lo 4o " N S W B " P A
10°? 107? 107" 1g° 10°
M 0 4/5ea Leve! Frequency - Hertz Hiacen Lbyer

Figure 36: Spectral Transfer Function for q(t)/Nonlinear Hidden Layer

. System FreqQquency Bna Neltwork Spectrat Response for Tneta(t)

10" E T T T T T T Y - —T T T T T T T T T T T xvvvl§
- l
o k
10 = E!
E J
1wt E j
E 3
1 .
< -2 E
o A =)
23 3
o -
2 ~
<
' —
10°? 3
E =
3
]
1ot - . 30x cyc.es
E .. Sk CyC.es
r —_ True Systen
. o F i 4 n - — n PR S n L i i
B
1e? 1ot et 10° iCh
M D 47588 (eve freque €, - HErty HigJden Layer

Figure 37: Spectral Transfer Function for ©(t)/Nonlinear Hidden Layer

untrained condition (M 0.5/15,000) are shown in Figure 38 through Figure 41. The spectral
transfer function for u(t) for the untrained condition is shown in Figure 38. The frequency
response is relatively good with the exception of significant noise in the frequencies above
0.5 Hertz. The spectral transfer function for «(t) in Figure 39 is much better across the
entire frequency range, however some noise dynamics are apparent in the range of
frequencies above one Hertz. The spectral transfer functions for q(t) in Figure 40 show good
response across the entire spectrum. The spectral transfer functions for 6(t) in Figure 41 are
similar to those for a(t) and u(t) with some noise dynamics present in the higher frequencies.

An interesting phenomena is the fact that at the moment the simulation changes
from one flight condition to another, the dynamic RMS error rises sharply then drops,
indicating that the network is 'relearning’ that particular condition. This may imply that the
network model selection is not sufficient to fully model the nonlinearities of the multiple
models. This method provides a good model for trained and untrained conditions. However,
further study is again warranted to determine whether a better model structure may be found
to represent the nonlinear system. Nonlinear neural networks can be effective in modelling
nonlinear systems, however some further work on determination of the number of hidden
elements must be done.

The use of neural networks in estimation has been demonstrated in the previous
paragraphs. The similaritv between neural networks and classical estimators was
demonstrated, as well as the ease with which neural networks can be reconfigured. The
power of the network to choose its own parameterization was also demonstrated. Justification
for the use of fully connected neural networks was described. Also, the use of nonlinear
activation functions to model nonlinear systems was shown. The structure developed for the

neural network adaptive controller is successful at estimation applications.

C. CONTROL USING THE NEURAL NETWORK ADAPTIVE CONTROLLER
The neural network adaptive control structure is also a successful controller. An

important issue in the use of adaptive controllers is the fact that closed loop systems corrupt

70

System Frequercy an0o Network Spectra! Response for u{t)
10‘ Y T 7 T T T T T T v T T T T T YT T A T vv!
= t
TN '
P \ !
iy N i
10!2 " _“
1wl T
o 1077 [b
°
)
c
o
<
2 ok -
s b -
.
\
160 ™
- - Ux Cyc¢ &S .
itk _ _ 3Bx cCycCias ~ R
. True System i
1
|
!
- " " L . . n MY
15? o N +g° ¢’
M C S TL. 030 Tt Frequercy {mertr} MUt moge
Figure 38: Spectral Transfer Function for u(t)/Untrained Condition
CvSter FrelueT L, A Releltr Srecira: Response for A pnaft)
I = ~r —T 3 T T T T T =)
- =
s
: 1
r
r N
- 1
. |
= Bl
: o |
v oE Z5N 3
- 5 -
— =
: \ :
- \ -
- ~
- . -
. : X ‘
7 , LN
z \\‘ i
s f R :
=t - \ -
3 - \\, !
= N 1
- \\ =
|
| \"\\,_/ |
T E v 3
- Y
r vt 3
= _ 36Tyl tws \ 7
s _ e Cve e . j
L e e \
- |
t
i !
S O U Y "
Tz ot o
wooou e .- e MU UM Se

Figure 39: Spectral Transfer Function for aft)/Untrained Condition

71

System Frequency B8N0 Networx Spectra! Response for q(t)
T T YT T T T Ty v

T T T Ty T

}/{ 360k cycreg
EA I6r CycCtes

True Svstem

Megnitude
a - -
o o Q
q] ry
& L
- ’T_T_TTTT—-T_T_T_FTTTW'—T—'—T—I_TTTTTT‘—W
~
~

SRR . PR PO L P S ST o i

T T T T

L.l) iy i NN FD SN Y

il

10°? 10! gt 10°

M 0 5/15,000 ft Frequency (Heri1z) MUIt¢moge!

"
o

A S U W WS T

Figure 40: Spectral Transfer Function for q(t)/Untrained Condition

System and Netwark Mooe! freguenly Response for Tnetslt)

T T T T T ~ =TT T T T T T T T —T—

//\‘.
TN

[

o

v

? . ™

Q
]

o

=]

I6Qr vy tes
36y cycles
Trye Syvstem

o

Magnituse
3
L .
RSN SR IR A 144t s T 00 1) Saes Mt B 02 VA o 0 1 S S B 0 212 B B B R 0101
/
-

n PO 1 N U S W " U S U S S Y 1

T

.

_L_LJ_‘LLUJJ_J‘__L‘LUUU_J.._‘LALLLLLLL_J;_LLUJHL___L_.L_LLUUJ__I__L.LJJ.UH

i

ot ot 10°

o

Mo /a5 Qoo Frequercy (nertz) NMult tmoge |

Figure 41: Spectral Transfer Function for ©(t)/Untrained Condition

the input. This may eliminate any persistency of excitation present in the input. The model
does not have to be exact, however, to produce a good controller. The model only has to be
accurate over the range of frequencies in which the controller is active. This should be
provided by the control inputs themselves. The simple example of a neural network
demonstrated here shows the noise rejection capabilities of a linear neural network controller.

Using the random binary input, the noise rejection capabilities of the neural network
adaptive control structure can be demonstrated. Since adaptive controllers have proven
effective in noise rejection in the past, it was hoped that the neural network adaptive
controller would be effective as well. The network used {~r this part of the investigation was
the same as that used for the fully parameterized linear neural network estimator. The flight
condition was Condition 2 with a mach number of 0.4 and an altitude of Sea Level. The plot
in Figure 42 shows the control input which the network produced in response to the random
binary input for the first 9000 cycles (900 seconds). Note that the input goes asymptot:cally
to zero as the network rejects the white noise, random binary input. The network dynamic
RMS estimation and tracking errors are shown in Figure 43 through Figure 46. The dynamic
estimation error is the error in the model or prediction as the network trains. The tracking
error is the difference between the model reference output and the network output as the
network trains. In Figure 43 the tracking error and estimation error both appear to go to
some small value. The estimation error and tracking error for o(t) in Figure 44 are much
more descriptive. Note how the estimation error goes to zero while the tracking error goes
to some steady state value. The same result can be seen in the estimation and tracking error
for q(t) in Figure 45 and for ©(t) in Figure 46. The estimation error for all of the outputs
is decreasing, but has not gone to zero as in the fully parameterized linear neural network
estimator. This is due to the loss of persisteni excitation in the control input. Also, note the
fact that the tracking error for all four outputs goes to some steady state error value. Within
the 9000 cycles (900 seconds) that this model was trained, the white noise random binary
input signal was rejected. In this simple example, the use of a neural network adaptive

controller to reject noise has been effectively demonstrated.

73

D. SUMMARY

The effectiveness of neural network adaptive controllers in estimation and control has
been demonstrated in this chapter. The static and dynamic stability of the neural network
adaptive control structure was shown. The effects of persistency of excitation, information
content, and sampling time on the estimation process were demonstrated using a linear
network. With the addition of more parameters, this linear network could develop an exact
model for the system. The use of nonlinear neural networks in estimation was then
demonstrated to develop models for linear and nonlinear systems. The importance of
developing the theory necessary to use nonlinear nsural networks was discussed. Finally, the
use of a simple neural network adaptive controller in noise rejecticn was demonstrated and
the effects of adaptive control on estimation were discussed. This neural network adaptive

control structure shows tremendous promise for future applications.

74

TNnput
[=]

NFtvork Detsrm.nec Coptrol inDu}

T T T
!
I .)
| (
i
|
!ﬂ
‘ 1 1 1 1 i ! ! i
0 18C 200 300 40¢ 500 600 100 800
Time (3econos) Rangom Binary Input

900

Figure 42: Network Determined Control Input/Noise Rejection

£t mal.on Error for UZt)

T 3 T T
¢ 2%+ 1
I i
: J
v er !
g s : o
5 bin
a i o
1F B
IH' |
I i
ok LI b |
/] 'r AA"“/’)" |
c i A [N TR N '.IWMWMMWAJ
G 105G 2un 307 ain “qr 60C 7c0 800 §02
Time (Lecnncs, Rangom Binary I(nput
63— —_. Iracte il Erecr fQr U]]
0 2%} .l
N ‘l
s H
“ 7
g .
: i
a
[E -
.] ~. b
[' ' [, i ; /
[P R T \
D U P S UEURPVU SN W UV VO b
s a5’ S04 60¢C 700 [:1s]s] 900
Tiome [Heoonds) Aancdoem Binary 1nput

Figure

43: Estimation and Tracking Error for u(t)/Noise Rejection

75

800

£y mation Error for ALPMA(Y])
[\ — Al T —
0 4 =
.
° 0.3 1
N
v
w
2 o .8 .
a
o 1 ~
. Atm m e " " . . .
D 100 20C 300 400 300 &00 700 BOO
Tirme (Seconds) Ranaom Binary input
Irackng Ecror for ALPHACL)
[] T T
0 st =
Lo l]
: \
Y
w0 Ifge B
v 1
g |
02
i
'i
o “ l] l Wtk l M 1] ll «l AR I hul
a 100 2C9 3ce s00 §C0 Jce 800
Time [Seconao: Aandoms Bi.nary Input

Figure 44: Estimation and Tracking Error for af(t)/Noise Rejection

EBL mav or Er-or fer Grty

] R

T.me (Seio~gs) Ranacm Binsry 1npu?t

lrack.fg Eeror ftor QTG
o

ECC 010 8CC

G 25 .
o 2F B
S ¢ 15[‘ ! J
o ! i
2l i
2 0 1 b i ']
|
1 ty’A&A‘QfJ." Al LA M £ WL Aad i AW M D P o fa el me Mo

Ve ac: 128

9L

l .
fIA r ’
Q af]
o 6ar 1
Iy
»
3 02 " \ l
a
0 1 (f 1’ {“
t i :
' | H a1
;L | [18 |
0 A L
s] TQcl 20 s €Ce e
Time [SecunCs kangom Brnary nput

Figure 45. Estimation and TRacking Error for q(t)/Noise Rejection

76

RMS Error

Ext mat:on Error for THETACY
T T T r

Time (Seconus) Rangom Binary input

Tracking Error fto- THETALLY
v al

5 ¢
-
]
400 st E00 0 800 90
Time (Seconse Random Binary rOULY
Figure 46: Estimation and Tracking Error for ©(t)/Noise Rejection

77

VII. CONCLUSIONS AND RECOMMENDATIONS

Neural networks are effective in the solution of adaptive control problems. As systems
become more complex and the requirements placed on them become more demanding,
parallel disiributed processing applications will become an important tool in the design of
adaptive controllers. In this thesis, a neural network adaptive control structure was developed
from similarities in neural network, estimation, and control theory. The effectiveness of this
structure was tested in the estimation and control of linear and nonlinear approximations of
the longitudinal motion of the A-4 aircraft. The difficulties which the system of longitudinal
motion of the A-4 aircraft presents to conventional estimation and control were discussed.
Various significant concepts in estimation and control were discussed and demonstrated using
the neural network adaptive control structure. The significance of parameterization for
estimation applications as well as neural networks in general was illustrated. A theoretical
basis for the scaling of data and the choice of learning rate in neural networks was developed.
The concept of the semilinear activations providing robust linear characteristics was
discussed. The neural network adaptive control structure developed for this thesis
demonstrated the applicability of parallel distributed processing tools to adaptive control.

The ncural network adaptive control structure introduced in this thesis was developed
in a manner consistent with adaptive control theory. The concept of estimation involving
the mapping of some regression vector of past input and output measurements into the
current output measurement was developed. The idea of a general control structure involving
the weighted sum of some state variable and a reference input was also discussed. From these
concepts, a structure for a neural network adaptive controller involving an estimation and
control process using the Backpropagation neural network type was determined. As an
estimator, the neural network maps a regression vector into a current measurement. As a
controller, the neural network maps the regression vector into a control input, which is then

fed forward through an internal model of the system and compared to some reference output

78

in order to adjust the weights, or gains, of the controller. Unlike conventional adaptive
control schemes, the neural network adaptive controller is easily extended to nonlinear
estimation and control. This structure proved to be flexible and robust.

Implementation of this neural network adaptive control structure was demonstrated on
the system of longitudinal motion of the A-4 aircraft. Estimation and control capabilities
were shown. First, the stability of a linear neural network estimator was demonstrated.
Following this, two linear neural network estimators with different parameterizations were
illustrated. The first, parameterized as four separate transfer functions, developed a fair
model of the system while demonstrating the susceptibility of neural networks to a variety
of problems known from estimation theory. The other, fully parameterized, neural network
estimator modelled the system exactly. The similarities between estimation theory and neural
networks was demonstrated using these two linear estimators.

Two nonlinear neural network estimators were then demonstrated. Very little theory
exists to help determine the structure of nonlinear neural networks. For this investigation,
empirically determined neural network estimation structures were used to develop models for
linear and nonlinear systems. The linear system which was to be modelled was the same one
used for the linear estimators. The nonlinear neural network which was used to model a
linear system performed well, but not as good as the fully parameterized linear estimator.
The nonlinear system to be modelled was formed by presenting a number of different linear
models to the neural network. The nonlinear network which was used to model a nonlinear
system was relatively successful at modelling the nonlinear flight conditions and generalizing
for flight conditions on which it was not trained. Thes;a two demonstrations illustrated the
capabilities of neural network estimatcrs to model nonlinear systems.

Using the linear neural network adaptive control structure, noise rejection capabilities
similar to those of other forms of adaptive controller were demonstrated. The neural network
adaptive controller was highly successful at rejecting a random binary, white noise input.

This thesis has shown that neural networks have tremendous potential in the field of

adaptive control. Further study on this specific adaptive control structure should be made.

79

The use of this structure to develop various combinations of nonlinear and linear control and
estimation should be studied. For nonlinear networks, a theoretical basis for the number of
elements, and convergence and stability characteristics are needed. For all types of neural
network, better ways to adapt the gain need to be developed to avoid the problems of scaling
and changing the learning rate. With the demands on current forins of control steadily
increasing, the need for real time parallel distributed processing applications in control will

become essential.

80

10.

1.

12.

14.

REFERENCES

Bavarian, Behnam, "Introduction to Neural Networks for Intelligent Control", IEEE
Control Systems Magazine, v. 8, no. 2, pp. 3-7, April, 1988.

Rumelhart, D. E., J. L. McClelland, and the PDP Research Group, Paralle! Distributed
Processing.: Explorations in the Microstructure of Cognition, The MIT Press, 1988.

Klimasauskas, C.,and others, Neuralworks Professional II Manual, Neuralware, Inc.,
1988.

Hecht-Nielsen, "Kolmogorov’s Mapping Neural Network Existence Theorem”, IEEE
First International Conference on Neural Networks, 1987, The Institute of Electrical and
Electronic Engineers, Inc., 1987,

Goodwin, G. C., and K. S. Sin, Adaptive Filtering, Prediction, and Control, Prentice-
Halli, Inc., 1984.

Ljung, L., System Identification: Theory for the User, Prentice-Hall, Inc., 1987.

Astrom, K. J., and B. Wittenmark, Adaptive Control, p. 14, Addison-Wesley Publishing
Co., 1989,

Kawato, M., and others, "Hierarchical Neural Network Model for Voluntary Movement
with Application to Robotics", [EEE Control Systems Magazine, v. 8, no. 2, 5 il 1988.

Sun Microsystems, Inc., The Sun 386i. The Corporate 386, 1988.
Neuralware, Inc., Neuralworks Professional Il on Sun Workstations, 1989.

Moler, C., J. Little, and S. Bavert, Pro-MATLAB User's Manual, The Mathworks, Inc.,
1897,

Etkin, B., Dynamics of Flight--Stability and Control, 2d ed., John Wiley & Sons, Inc.,
1987.

Nelson, R. C., Flight Stability and Automatic Control, McGraw-Hil;, Inc., 1989.

Harris, C. J., and S. A. Billings, ed., Self-Tuning and Adaptive Control. Theory and
Applications, pp. 109-141, Institution of Electrical Engineers, 1981.

81

APPENDIX A: NEURALWORKS PROFESSIONAL II ASSOCIATED PROGRAMS

SO AESSNENELSBIISRLSUISIOUNSESEIEENSSSSARISRSEESNN LIS ISARNREIEISOEOSISRINRUSELESEROrIR

* Source: simo.txt

* Executable: simo

* Version: 3.1

* Date: 22 November 1989

* Author: R W. Scott

* Project: Neural Networks in Adaptive Control

* Environment: UNIX/SunOS C

* Path: cileen:/home /rscott/nworks /textfiles

* Description: This is a prototype for the USERIO program spawned by
NWORKS Professional II to provide input and output
vectors for the use of an adaptive control neural
network. The program operates by running a simulation
of the longitudinal motion of the A4 aircraft at
the same speed as sampling time of the network.
Numerous different input types are available. The
simulation may be run at various flight conditions as well.
The structure for control is available, however, only the
estimation portion of the program is provided.

Revisions: —Inclusion of multiple input types
~Inclusion of easy overparamaterization

..“l.......l‘l..‘.".l"“i.....‘.."l.ll‘..'.."llIt"‘U.It‘t‘.tt'..ll'.‘..'.“‘l.“‘/

® % 8 8 8 & 8 e au e

/* Include the following externai modules */

#include <stdio.h>

#include <math.h>

#include "userutl h”

#include "transfer.h” /* File of parameiers */

/* Neuralworks calls the USERIO program through the function UsrlO */

int UsrlO()
{

/* Declarations */

extern double sin(); /* Sinc function */

extern double pow(); /* Power function */

extern double fmod(): /* Remainder function */

extern long random(); /* Random number generator */

extern char *condition_name(}:;/* Names of conditions */
extern char *input_namel]; /* Names of inputs */

extern char *filter namef]. /* Names for [ilters */

extern double altitude(]; /* Altitudes */

extern double mach(}; /* Mach numbers */

extern double noise_coefl{3][5];

extern double num(5]{4][4]; /* Numerator coefficients */
extern double den{5}[4); /* Denominator coefficients */
extern double freq(}; /* Frequencies for composite sine */
extern double weights[]; /* Weighting of frequencies */
extern double ts; /* Sampling time */

/* Random phase for sine waves */
static double phase[8)={0.0,0.0,0.0,0.0,0.0,0.0,0.0.0.0});

static int profile={0};
static double tot_w1={0.0};/* Total weight for comp sinc */
static int redraw,in={0}; /* Redisplay initialization flag */

static double checkl; /* Check flag */

static double check2; /* Check flag */

static double count={0.0}; /* Display counter */
static int condition; /* Selected condition */
static int input; /* Selected input */
static int filter; /* Selected filter */

/* RBS Uniformly Distributed White Noise Sequence */
static double noise[S]={0.0,0.0,0.0.0.0,0.0};

/* Fedback regression vector */
static double feedback{19]={0.0.0.0,0.0.0.0.0.0,0.0.0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0.0.0.0.0};

/* Ref input + regression vec */
static double command[20]= {0.0,0.0.0.0.0.0.0.0.0.0.0.0,0.0.0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0.0.0.0.0}:

/* Regression vector applied to NN */
static double control[20] = {0.0,0.0.0.0,0.0.0.0.0.0.0.0.0.0.0.0.0.0,
0.0,0.0,0.0,0.0,0.0,0.0.0.0.0.0.0.0.0.0};

/* Plant response to regression vector */
static double plant{4}={0.0,0.0.0.0.0.0};

/* Model reference output */
static double reference[4]={0.0.0.0.0.0.0.0}.

static double rcount.rmem: /* Counters for gencrating inputs */

int ij; /° Indices */
char buf]90]: /* Display buffer */
char *sp; /* String pointer */

/* Definitions */

#define MAXRAND (Ox7Ifffff11)
#define rand random

/* Define layer names */

#define feedback_lay 0

#define command lay 1

#define control_lay 2

#dcfline plant lay 3

#definc reference_lay 4

/* initialization here (if nccessary) */

IORTNCDE = 0;

83

switch (IOREQCDE) {
case RQ_ATTENTION:
/* User select input to be used */

Again3:
sprintf(buf,"\nEnter Desired Input Type (1. %s, 2. %s, 3. Gec",
input_name{1}input_name|2].input_name[3]):
PutStr(buf);
sprintf(buf,"\nd. %s, 5. %s, or 6. %s)",
input_namef{4],input_name{S}.input_name|[6}):
PutStr(buf); - -
sp=GetStr();
sscanf(sp, "%ld", &input);
if(input >6. || input<1.)}{
sprintf(buf, "\n%s",input_name[0]),
PutStr(buf);
for(i=0;i<1000;i + +){

)
goto Again3;
}

/* User select condition to be used */

Again:
sprintf(buf."\nEnter Desired Mach Number and Altitude (1. s, 2. 9s.",
condition_name|l].condition_name{2]):
PutStr(buf);
sprintf(buf,"\n 3. %s, 4. %s, or 5. 9s)".
condition_name([3}.condition_name{4}.condition_name{5]);
PutStr(buf);
sp = GetStr();
sscanf(sp, "%Id", &condition);
if(condition >5. !} condition<1.){
sprintf(buf, "\n%s",condition_name[0});
PutStr(buf), -
for(i=0;i < 1000;i + +){

}

goto Again;
}
if(input = =2, Jinput= =5 linput= =6){
Again2:

sprintf(buf."\nEnter Desired Filter (1. %s. 2. %s. or 3. Ges)?",
filter_name(1].filter_name[2].Nilter_name[3]):

PutStr(buf); - B

sp = GetStr();

sscanf(sp, "%ld". &filter);

if(fiter >3. 1) filter<1.){
sprintf(buf, "\n%s" filter_iame(0]):
PutStr(buf)

for(i =0 < 1000;i + +){ *
goto Again2;

}

}

/* Display selections */

sprintf(buf,"\nCondition: %s Input: %s sclected”,
condition_name[condition}.input_name[input]):
PutStr(buf); ~ -
if(input = =4){
PutStr("\nEnsure LR is sct to zcro for test”):
}

in=1,
break:

84

/n

”

/

/o

/

case RQ_REWIND:
rewind here */

count =0.0;
break;

case RQ_LSTART:

learn start */

initialize condition and input if not already done so */

if(in==0){
input=1;
condition=1;
in=1;

}

check if user wishes to redisplay after every plot reaches the end */

PutStr("\nHow often do you wish to redraw the screen (0 for never)?”);
sp=GetStr():
sscanf(sp, "9cld", &redraw);

compute the total weights for composite sine wave */

for(i=1;i<8i+ +){
tot_wt=weight{i] +tot_wt;
}

start random binary or composite in time sequence */

if(input= =11 linput = =6){
rcount =0.0;
rmem=rand() % 4;
command[0] = pow(-1.0.rmem);

}

start filtered random binary sequence */

if(input= =2){
rmem=rand() % 4;
noise{0] = pow(-1.0.rmem):
command|0} = noise_cocff|filer-1][0)*noisc|0}:
for(i=1i<3:ii+ +){
command|0] =command|[0] + noise_cocll[filter-11{i}* noise[i);
command[0] = command|0]-noise_coeff[filter-1][: + 2] *noise(i+ 2]
noise[i] = noise|i-1]:

noisc{4] = noisc[3):
noisc[3} =command[0}:

85

/* start composite sine wave sequence */

if(input = =3){
for(i=0;i<8;i+ +){
rmem =rand() % 10:
phase|i] =rmem*3.1415927/5.0:

command{0]}=0.0;
for(i=0;i <8;i+ +){
command[0] =command([0] + weight[i]/tot_wt*sin((freq[i])*count*ts + (phase(i]));

}

/* start test sequence (swept square wave) °/

if(input = =4){
rmem =90.0;
reount =90.0;
command[0] = pow(-1.0,rmem);

}

/* start composite simultaneous sequence */

if(input==5){

mem=rand() % 4;

command[0]=0.1*pow(-1.0,rmem);

rmem=rand() % 4;

noise[0} = pow(-1.0,rmem);

command{0] =command[0] + noisc_coelf|filter-1][0]*noise[0];

for(i=1i<3;i+ +){

command[0] =command|0] + noise_cocf([filtcr-1]{1]* noisc{i};

command[0] = command{0]-noisc_coelf[filter-1][i + 2]* command]i};
noise|[i] = noise[i-1]:

1

/* display the starting conditions */
sprintf(buf, "\nCondition: %s Cycles: %f Input: %s".
condition_name[condition], count, input_namc[input]):
PutStr(baf);
break;
case RQ_LEARNIN:
/* input command layer to the network */
if(IOLAYER = =feedback lay && 10COUN = =19){

for(i=0; i<1%i+ +){
10DATAi] = feedback{i):

}

/* input feedback layer to the network */

if{ TOLAYER = =command_lay && 10COUNT = =20){
for(i=0:i<20;i+ +){
IODATA(i]=command|i}:
)

break;

86

case RQ_WRSTEP:
/* output control layer from network */
break;
case RQ_LEARNOUT:
/* present plant or model response to the network */

if(IOLAYER = =plant_lay && I0COUNT == 4){
for(i=0i<4;i+ +){
IODATA[i] = plant[i];
}

}

if(IOLAYER = =reference_lay && IOCOUNT = =4)¢{
for(i=0;i<4ii+ +){
IODATALi] = reference(il:

}

break:
case RQ_LEARNRSLT:
/* control output from network */
if(IOLAYER = =control_lay && IGCOUNT = =1)

for(i=0;i<20;i+ +){
control[i] =command]i}:

control{0] = TODATA[0]:
/* generate system and model response to this control mput */

for(i=0;i<dii+ +){

plant|i}=0.00:

referenceli]=0.00;

for(j=0;j<4;j+ +){
plant[i} = plant{i] + num[(condition-1][i][j}* (controlj}y:
plant{i] = plant[i] + den{(condition-1)]}}* (control{4* (1 + 1} + {]):

reference[i] = reference[i] + numi1}{i}|0]*command|0}:
reference[i] = referencefi] + den|1)[0] *control[4* (i + D}
for(j=1;j<4;j+ +){

referencefi] = reference(i] + num{1]]i]]j]*comrol]j}:
reference[i] = referencelil + den|1))]* control{4* (1 + 1) +j|:

}
for(1=0;i<4:i+ +){
if(plant{s}>100.0 | plantfi]<-100 0y
plant|1) = 0.0

}
if(referencefi} >100.000 1} referencelij<-100.0){
plant|i]=0.0;

Y

/* system identification result out from network */
if(IOCOUNT = =4 && IOLAYER= =plant_lay){

/* shift the regression vectors */

for(i=0;i<19;i + +){
feedback[i] = control[i};

for (i=0;i<19:i+ +){
command|i + 1] =controlfi];

/* generate a new random binary input */

if(input= =1){
rcount + +;
command[0] =command]1]:
if(fmod(count.2.0) < 1.0){
mem=rand() % 4,
command{0] = pow(-1.0,rmem);

/* generate a new filtered random binary input */

if(input = =2){
rmem=rand() % 4;
noise[0] = pow(-1.0.rmem);
command(0] =noisc_coc(f{filtee-1}{0]* noise[0};
for(i=1Lii<3ii+ +){
command{0] =command|0] + noise_cocff]filtcr-1][i)* noise]i);
command|[0] =command|0]-noise_cocff[filtcr-1][1+2]*noise]i +2
noise{i] = noise[i-1};

noise[4} = noise([3]:
noise[3]=command(0]:

}

/* generate a new composite sine wave input */

if(input = =3){
command|0}=0;
for(i=0;i<8;i+ +){
command([0] =command([0] + weight[i] /tot_wt*sin((freqfi])*count®ts + (phasefi]));

}

/* generate a new composite simultancous nput */

if(input = =5){

rmem=rand() % 4;

noise{0] = pow(-1.0.rmem):

command[0] = noise_coe(([filicr-1}[0]*noisc|0]:

for(i=1i<3:i+ +){

command|0} = command(0] + noise_coeff[filter-1]i]*noise]i}:

command(0] =command(0]-noisc_cocll{filtcr-1]{1+ 2}*noise{i+ 2}
noise(i] = noise[i-1];

noise{4) = noisc(3);

noise[3] = command|[0];

rmem=rand() % 4;

command[0] =command[0] +0.1* pow(-1.0.rmem):

/* generate a new test (swept square wave) input */

if(input = =4){
rcount—;
if (rcount< =0.0){
rmem--;
rcount = rmem;
if (rmem< =0.0)¢
rmem =90.0;
rcount =90.0;

}

command{0} = pow(-1.0.rmem);

}

/* 1oad the regressors with system and modcl responses */

for(i=0;i<4;i+ +){
command[4*(i+1)] = -plant]s]:
feedback(4*(i+1)-1] =-plant]i):

/* increment the counter and update displays as neccessary */

count + +;
checkl =fmod(count,10.);

if(check1<1.0){

sprintf(buf, "\nCondition: %s Cycles: %[Input: %s",
condition_name{condition], count.input_name[input]);
PutStr(buf);

c)hcck2=fmod(c0unl.300.):
if(check2<1.0){
profile + +:
if (profile > =3M{
for (i=0u< 190+ +){
fecdback]i] = 0.0
command{i+ I[=0.0:

)
profilc =0:
}
)
if(redraw 1=0){

if(fmod(count,(double)redraw) < 1.0){
IORTNCDE=1:
}

89

/* generate a new composite in time input (requires the use of counters) */
if(input = =6){
if(checkl > =check2){
rmem=rand() % 4.
command[0] = pow(-1.0.rmem):
noise[3] =0.0;
noise[4] =0.0;
elsef
rmem=rand() % 4:
noise[0] = pow(-1.0,rmem);
command|0] = noise_cocff{filter-1][0}*noise[0];
for(i=1;i< 3+ +){
command[0] =command|0] + noise_cocff|filter-1][i]*noise[i];
command|0] = command|0]-noise_coeff{filicr-1][i+2]*noise[i +2);
noise[i] = noise[i-1];

noise[4] = noise[3]:
noisc|3] =command{0}:

}

/* control result out from network */
if(JOCOUNT = =4 && IOLAYER= =rcference_lay){
break;)
case RQ_LEND:
/* end learning mode, display current status */
sprintf(buf, "\nCondition: %s Cycles: %f Input: s
condition_name[condition]. count. input_name]input]);

PutStr(buf):

break;

case RQ_RSTART:

break;

case RQ_READ:
break;

case RQ_WRITE:
break;
case RQ_REND:

/* end recall */

break;

00

case RQ_TERM:

/* terminate userio */

sprintf(buf, "\nCondition: %s Cycles: %f"
condition_name|condition]. count):

PutStr(buf):

break;

return; .

91

ST E I PN NP IR TN NP PP EIUR ST aI RS T P INO PO TITEI T RIETTETTEIEIOITREIOISONISS. v asw

* Source: transfer.txt
* Executable: simo
* Version: 15

* Date: 22 November 1989

* Author: R. W. Scott

* Project: Neural Networks in Adaptive Control
* Environment: UNIX/SunOS C

* Path: eileen:/home/rscott/nworks/textliics

* Description: This is the header file used to define the variables

used in the USERIO subprogram simo. This allows casy
reconfiguration of the executables by simply changing
information in the header file. Inputs include altitudes,
airspeeds, the sampling time, selected frequencies and

and weightings for a sum of sine waves input, lahcls for the
inputs, conditions, and states, and the cocfficients for the
numerators and denominators of the system and various filters
* used to generate filtered noisc.

* Revisions: —Inclusion of muitiple input types

.......“""t.l.."‘.‘...‘-....t'."""lttl"tl".l‘.lll'....."."‘.‘l‘.../

a & # 8 0 &

/* Altitudes in thousands of feet */
static double altitude[S]=

v.6,0.150,0.350,0.0.0.350

/* Mach Numbers */
static double mach[5]=

04,0.5,0.6,08,08
|5

/* Sampling Time */
static double ts={0.1}.
/* Frequencies for sum of sine waves input */

static double freq{8]={
0.005,0.09,0.11,0.65,1.5,2.75.3.0.10.0
b

/* Frequency weighting for sum of sinc waves input */

static double weight|8]= {
2.0,3.0.2.0,3.0,2.0,3.0.2.0.0.5
b

/* [Input, condition, state, and filier labels */

static char *input_name[] = {"llicgal Input"."Random Binary”,
"Fittered RB","Composite Sinc","Swept Square Wave-Test Only™,
"Composite Sim","Composite Time"}:

static char *condition_name|] = {"lllegal Condition".
*M 04/SL", "M 0.5/15K", "M 0.6/35K", "M 08&/SL.", "M 0.8/35K"}:

static char °state_name[] = {"lllegal State™."u(1)"."alpha(1)".
"q(1)", "theta(t)"}:

static char *filter_name[] = {"INegal Filter"."0.5 117 co".
"0.2 Hz co"."Alpha App M 0.5/15K"}.

/* Numerator coefficients */
/* Order is ul-u4,al-ad,qlq4.1-14 for the inncr indices and
Condition 1-Condition S for the outer index */
static double num[5]{4][4]=
1.248543503451494e-04,
3.554904582170337¢-04,
-3.247047792447333¢-04,
-1.039094082966319¢-04,
-6.756262084831643¢-02,
8.786514170600235¢-02,
2.676626371037605¢-02,
-4.708037372835860¢-02,
-1.173118751144243¢ + 00,
3.425397067901477¢ + 00,
-3.33156842119655%¢ + 00,
1.079290104439327¢ + 00,
-6.062231436411736¢-02,
5.883590144983231¢-02,
5.479098533816495¢-02.
-5.301772049566766€-02,
1.733432397501566¢-04,
4.664138711447663e-04,
4.606405022249405¢-04,
-1.388039811326403¢-04,
-6.509790082128220e-02.
8.131467412035409¢-02.
3.246072975226699¢-02,
-4.868611382480093¢-02,
-1.159429186560191e + 00.
3.404538807812190¢ + 00,
-3.330869731837395¢ + 00,
1.085760110585395¢ + 00,
-5.953704958760442e-02,
5.808824962831594e-02,
5.505421438561653¢-02,
-5.361344543414581e-02.
1.683431989607520¢-04.
4.427763960341835¢-04,
-4.616352316690886e-04,
-1.351063663521668e-04.
4.275127449734661€-02,
5.171905532394572¢-02.
2.472773164204334¢-02.
-3.369874470285861¢-02,
-7.719049116594103¢-01,
2.289294061271993c +00.
-2.262864984231793c + 00,
7.454758346192119¢-01,
-3.919528344719048e-02,
3.872425877625929¢-02,
3.749529462200130c-02,
-3.702344394883295¢-02,
6.677957396172829¢-0S.
2.425576303810573¢-04,
-1.782118437363422¢-04,
-7.369054508732376¢-05.
-9.52755824664444 1e-02,
1.115637753090919¢-01,
6.244296581944386¢-02.
-7.873812158122262¢-02,
-1.7677082253839G%¢ + 00.
5.198238987741318e + 00,
-5.093536378204770¢ + 00,
1.663005615847422¢ + 00,
-9.111095856528628e-02,
8.934216069297385¢-02.
8.414788921865490¢c-02,
-8.239747524425589¢-02.
6.677957396172829¢-05.
2.425576303810573¢-04,

-1.782118437363422¢-04,
~7.369054508732376¢-05,
-9.527558246644441e-02,
1.115637753090915¢-01,
6.244296581944386¢-02,
-7.873812158122262¢-02,
-1.767708225383969¢ + 00,
5.198238987741318¢ + 00,
-5.093536378204770¢ + 00,
1.663005615847422¢ + 00,
-9.111095856528628e-02.
8.934216069297385¢-02.
8.414788921865490¢-02,
-8.239747524425589¢-02

I

/* Denominator coefficients */
/* Order is denl-dend for the inner index and Condition 1-Condition §
for the outer index */
static double den[5][4]=
{

-3.694923643854825¢ + 00,
5.180217304754835¢ + 00,
-3.275499735648207¢ + 00,
7.902148612567820e-01.
-3.746857513326851¢ + 00,
5.326510948543416e + 00,
-3.412294750223168¢ + 00,
8.326474112728178e-01,
-3.851514509136133¢ + 00,
5.606710127567315¢ + 00,
-3.658817410841104¢ + 00,
9.036239272554680¢-01,
-3.712165762093378¢ + 00,
5.260223167365153¢ + 00,
-31383762647629577¢ + 0,
8.357099953933538e-01.,
-3.759751975887927¢ + 00,
5.374549739965524¢ + 00,
-3.469699533531960¢ + 00,
8.549056369244077¢-01

1

/* Coeffieients for filtered noise terms */
/* Order is numl-num3 & denl-den2 for the inner index and filter]-
filter3 for the outer index */

static double noise_coeff]3){5] =

{

2.085670251279634¢-02,
4.171340502559269¢-02,
2.085670251279634¢-02,
-1.561018075800718¢ + 00,
6.413515380575631¢-01.
5.063654276859733e-03
1.012730855371947¢-02.
5.063654276859733¢-03,
-1.822694925196308¢ + 00,
8.371816512560227¢-01,
0.0,
-3.335605497273741¢-02.
-2.498849406787340¢-02,
-1.748500141242948¢ + 00,
8.340433823724368¢-01

I8

94

csv2.1
Mfile format is Control Strategy Version 2.1
t

Source: hiddenO.anc

Executable: neuralworks professional 11

Version: 13

Date: 22 November 1989

Author: R. W. Scott

Project: Neural Networks in Adaptive Control

Environment: UNIX/SunOS/Neuralworks Control Strategy

Path: cileen:/home /rscott/nworks/textfilcs

Description: This is a prototype control strategy for use with
and the simo USERIO program. The recall strategy is not
vsed. The control and identification strategics determine
sequence in which propagation and learning take place as
as the manner in which layers arc altcred.
This strategy uses a proprictary language which is covered

in some detail in the Ncuratworks Professional Il manual.
Revisions: No major revisions

MASK label op-code operandscomment

L _saR_sa optclr op:bkne ! do not BKp to Pls w/o conns
L _saR sa trace aux3 ! set tracc option to aux3

Li_aR sa csct recall0! recall count

t

i Recall Strategy
1

L_ R sa Iset in ! set command laver

L__Rsa 0 read ' get command veetor
L__Rsa Iset cur.l ' set feedback fayer

L_ Rsa o read ! get feedback vector

L_ R sa Iset in ! set command laver

L__ R sa math sum;moise tranoutput;e=0 ' fire Ist layer
L _ Rsa Iset curl ! set fecdback laver

L___R_sa math sum, rmoise tran,Gwpur /= 1 Tire 2nd laver
L_ Rsa Iset curl ' sct control layer

L_ Rsa math sumjrnoise {tranjoutput,e=0 ! fre 3rd fayer
L__Rsa Iset cur,] ! sct plant faver

L_ Rsa math sum,rnoisetranjoutput,c=0 ! firc J1h layer
L__Rsa Iset cur.l ! set reference laver

L Rsa math sum;rnoiseitranjoutput ! firc Sth layer
L__Rsa io write ! write recall resuft 1o userio

'

! Control Strategy

L_aR___ ccmp epochausl ! test for end of sys-id

L_aR bit @id ! branch 1o 1 phase

L:aR: Isct in ' oset command laver

L _aR_ io trnin ! get command veete.

L_aR__ Iset cur.l ' set feedback laver

L_aR___ io lrnin ! get feedbaet vector

L_aR__ Isct out toset relereance tiner

L_aR___ 10 rnout 'oger ref wence vector

L_aR__ Iset in ! oset cummand taver

L_aR__ math sumjlnoise{tranjout,utie=0iire ' fuce st layer
L_aR___ Iset curl ' ot feedback liner

L_aR__ math sumilnoise!tranioutputic=0firc ' firc 2nd laver
L_aR__ Isct cur,l !t sct controf fayer

L _aR___ math sumjinoise|tran,outputic=0{firc ! firc 3rd layer
L_aR___ o Irnrsht ! wrnle control result 10 useno
L_aR__ Iset cur.l tooset plam laver

I._aR__ math sumilnoisejtranjoutputie=0:firc ' firc 4th layer
L_aR__ Iset cur.l Y oset reference laver

L_aR__ math sum}inoisctran output;c-=w'firec * firc Sth

L aR Iset out ! set reference Javer

L:aR: math ce=cle®*=F backpifirc ' Dbkp Sth layer
l_aR__ Isct cur-| toset plant bve

IL_aR__ math ce=cle” =i hackp;fire * Dkp Jth laver
L_aR__ Isct cur.-l 'oset control laver

95

L_aR__ math ce=e;e”=Cibackpitcarn!firc ' bkp 3rd layer
L_aR__ Iset cur,-] Y set control layer

L_aR__ math ce=eje*=F backpllcarn firc ' bkp 3rd laver
!

! System Identification Strategy
!

L aR _ @id Iset in ! set command laver

L_aR__ io Imin ! get command vector

L_aR___ Iset cur,1 ! sct feedback layer

L_aR__ i0 trin ! get fecdback vector

L aR iset in ! set command layer

L_aR__ math sumjinoise;tranioutput;e=0ifirc ' firc Ist layer
L_aR__ Iset curl ! set feedback laver

L_aR___ math sumlnoise|tran outpuiie=0!firc ' firc 2nd layer
L_aR___ Iset cur,) ! set contro! layer

L_aR__ math sum;Inoise tran!output;c=0!firc ' fire 3rd layer
L_—_aR____ 0 Irnrsit ! send control inpuls to userio

L aR___ Iset cur,l ' set plant layer

L_aR__ i0 Irnout ! get plant vector from userio
L_aR__ math sum|lnoiseitran outputic-=w!fire * firc 41h
L_aR__ 10 Irnrsit ! write sys id result to userio
L_aR___ Iset out ! set reference layer

L_aR___ Iset cur.-1 ! set plant layer

L_aR___ math ce=cje®=flbackpilecarn|firc ! bkp/lcarn 4th
L_aR sa trace 0 ! turn off any trace function

90

APPENDIX 8: MATLAB M-FILE

% css2dtf.m

% Continuous state space to discrete transfer function conversion.
% Required inputs:

% system continuous a & b matrices

% t - sampling time

%

% Outputs:

% ab, bb, cb balanced state space

% ad, bd discrete matrices

% ns, ds numerator and denominator of discrete transfer function
%

% Convert b from radians to degrees

bx=b*pi/180;

Tt

% Scale outputs
¢=[.02172986525780895,29.358526682723,9.7019323535787,7.282373233084900];
c=diag(c);

d=zeros(4,1);

%

% Balance a, b, and ¢ matrices

[ab,bb,cb]=0balreal(a,bx,c);

%

% Convert to discrete time

{ad,bd]=c2d(ab,bb,t);

%

% Convert jto transfer function

[ns,ds]=ss2tf(ad,bd,cb.d,1);

APPENDIX C: CONTINUOUS STATE SPACE EQUATIONS AND DISCRETE MATRIX POLYNOMIALS

Sampling Time of 0.1 Seconds

Flight Condition |
a=

-1.5154e-02 -2.255%9e+00 0 -3.2174e+01
-3.1672e-04 -8.7896e-01 1.0000e+00 0
1.0825e-04 -9.4643e+00 -1.4604e+00 0
0 0 1.0000e+00 0
b=
0
-9.0927e-02
-1.2848e+01
0
alt =
0
u=
4.4658e+02
mach =
4.0000e-01
ns =
0 2.713le-05 7.7248e-05 -7.0558e-05 -2.2579%e-05
0 -3.4619e-02 4.5022e-02 1.3715e-02 -2.4124e-02
0 -1.9864e-01 5.8002e-01 -5.6414e-01 1.8276e-01
0 -7.7052e-03 7.4781e-03 6.9640e-03 -6.7386e-03
ds =

1.0000e+00 -3.6949¢+00 5.1802e+00 -3.2755e+00 7.902le-01

98

Flight Condition 2

aq=
-1.6751e-02 -1.4926e+01 0 -3.2174e+01
-2.3639e-04 -6.8474e-01 1.0000e+00 0
6.4590e-05 -8.6540e+00 -1.1300e+00 0
0 0 1.0000e+00 0
b=
0
-7.1523e-02
-1.2468e+01
0
alt =
15000
us=
5.2868e+02
mach =
5.0000e-~01
ns =
0 3.7667e-05 1.0135e-04 -1.0010e-04 -3.0162e-05
0 -3.3356e-02 4.1666e-02 1.0633e-02 -2.4947e-02
0 -1.9633e-01 5.7649e-01 -35.6402e-01 1.8385e-01
0 -7.5672e-03 7.3831e-03 6.9975¢-03 -6.8143e-03
ds =
1.0000e+00 -3.746%9e+00 5.32635e+00 -3.4123e+00 8.3265e-01

99

Flight Condition 3
a=

-1.0871e-02 -3.5930e+01 0 -3.2174e+01
-1.3174e-04 -3.6286e-01 1.0000e+00 0
2.0777e-05 -5.2634e+00 -6.3969¢-01 0
0 0 1.0000e+00 0
b=
0
-4.1024e-02
-8.0491e+00
0
alt =
35000
U=
5.8388e+02
mach =
6.0000e-01
ns =
0 3.658le-05 9.6215e-05 -1.003le-04 -2.9358e-05
0 -2.1906e-02 2.6501e-02 1.2671e-02 -1.7267e-02
0 -1.3071e-01 3.8765e-01 -3.8317e-01 1.2623e-01
0 -49818e-03 4.9219¢-03 4.7657¢-03 -4.7057e-03
ds =

1.0000e+00 -3.8515e+00 5.6067e+00 -3.6588e+00 9.0362e-01

100

Flight Condition 4

a=
-1.4120e-02 1.8216e+0! 0 -3.2174e+0}
-1.2471e-04 -6.3225e-01 1.0000e+00 0
3.9715e-05 -1.2887e+01 -1.1484e+00 0
0 0 1.0000e+00 0
b=
0
-6.2754e-02
-1.9154e+01
0
alt =
0
u=
8.9316e+02
mach =
8.0000e-01
ns =
0 1.4511e-05 5.2707e-05 -3.8725e-05 -1.6013e-05
0 -4.8819e-02 5.7166e-02 3.1996e-02 -4.0346e-02
0 -2.9933e-0! 8.8022e-01 -8.6249e-01 2.8160e-01
0 -1.1580e-02 1.1356e-02 1.0695¢-02 -1.0473e-02
ds =

1.0000e+00 -3.7122e+00 5.2602e+00 -3.3838e+00 8.357le-01

101

Flight Condition 5

a=
-1.4495e-02 -2.7679e+01 0 -3.2174e+01
-1.3174e-04 -5.5219e-01 1.0000e+00 0
3.6568e-05 -9.7906e+00 -1.0010e+00 0
0 0 1.0000e+00 0
b=
0
-5.4699e-02
-1.4552e+01
0
alt =
35000
u=
7.7851e+02
mach =
8.0000e-01
ns =
0 5.5856e-05 1.5033e-04 -1.53189¢-04 -4.5898e-05
0 -3.7808e-02 4.463%9e-02 2.4041e-02 -3.0875e-02
0 -2.3030e-01 6.7891e-01 -0(.6693e-01 2.1832e-01
0 -88646e-03 8.7106e-03 8.2723e-03 -8.1190e-03
ds =

1.0000e+00 -3.7598e+00 5.3745e+00 -3.4697e+00 8.5491e-01

102

10.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

Chairman, Code 67

Department of Aeronautics and Astronautics
Naval Postgraduate School

Monterey, California 93943-5002

Professor D. J. Collins Code 67Co
Department of Aeronautics and Astronautics
Naval Postgraduate School

Monterey, California 93943-5002

Professor J. P. Hauser Code 67Ha
Department of Aeronautics and Astronautics
Naval Postgraduate School

Monterey, California 93943-5002

Professor J. Burl Code 62B!
Department of Electrical Engineering
Naval Postgraduate School

Monterey, California 93943-5002

LCDR Roger Stemp Code 30
Operations Analysis Curricular Officer
Naval Postgraduate School

Monterey, California 93943-35002

Mr. Tor Jensen Code 6013
Naval Air Development Center
Warminster, Pennsylvania 18974

Mr. Joe Gera

NASA Dryden Flight Research Center
P. O. Box 273

Mail Code OFDC

Edwards, California 93523

Mr. Thomas Momiyama

AIR 931

Naval Air Svstems Command
Washington, D.C. 20361-0001

No. Copies
2

1.

12.

Mr. George Derderian

AIR 931E

Naval Air Systems Command
Washington, D.C. 20361-0001

LT Russell W. Scott

AIR 5466I1C

Naval Air Systems Command
Washington, D. C. 20361-0001

104

